Softswitch Requirements
<draft-ietf-enum-softswitch-req-00.txt>

Lawrence Conroy
Roke Manor Research
lconroy@insensate.co.uk

National Internet Development Agency of Korea
Joonhyung Lim
Weon Kim
Chanki Park
Softswitch Requirements: Summary

- Introduction: Background
- Requirements Listing
 - Operational/Regulatory
 - Routing Functions
- Trial Architecture
- Switch Processing
 - Prefix Routing Table Algorithm
 - ENUM Routing Algorithm
- Performance
- Lessons
- Migration
- Your Experiences needed
Introduction: Background

- Korean Industry and Government are working to develop and support new technologies
- Korean Government has a programme to support new addressing schemes - including ENUM
 - the +82 delegated ENUM apex is assigned to NIDA
- Korean Companies are starting to provide VoIP
- Korean Government has developed a regulatory environment for these services:
 - Allocation of Numbering resources for VoIP Providers
 - Performance and Quality rules for VoIP services
- NIDA is working with industry to test and develop ENUM for Korea
Requirements - Operational/Regulatory

- Resilient & Secure and Low Cost
- Able to restrict access - must allow call charging
- Provide Fast & Consistent Call Setup times
- Dynamic - allow rapid propagation of changes
- Provide clear Provisioning Responsibility & Control
- Able to handle foreign numbers (not in system)
- Allow good Problem Handling:
 - Early Detection (client knows when there’s a problem)
 - Problem Isolation (your problem is not my problem)
 - Limiting destabilization of different carrier systems
 - Limiting error propagation
- Flexible - adapt to changes in service/regulation
Requirements - Softswitch Routing Functions

- Able to route call request to appropriate host
- Provide Fast & Consistent lookup times
- Provide clear chain of authority for published data
- Provide rapid update and propagation of data
- Provide deterministic lookup results:
 - Need to know what kind of number, which host handles calls, and how to process call (SIP, PSTN, …)
- Able to migrate from today to future market:
 - Able to support/reflect Number Portability
 - VoIP-only number range:
 must be able to indicate service status for each number
Korean ENUM Trial Architecture

• NIDA
 – Combined Tier1/Tier2 Authoritative ENUM Servers
 – Centralised ENUM Provisioning using EPP
 – NIDA used DNS Update to reflect changes to ENUM entries onto Authoritative DNS servers

• Each Service Operator (there were two)
 – Carrier used EPP Client to provision ENUM
 • Note: these EPP Clients were decoupled from their Customer provisioning systems
 – Carrier’s Softswitches had configurable Prefix Table or ENUM sub-system to select call route
 – Softswitch ENUM sub-system was connected to carrier’s own “Internet-visible” Recursive Resolver
Prefix Routing Table Algorithm

• Examine first few digits of Destination Number
• Look up this prefix in “hard-coded” internal table
• If found, process call according to table entry:
 – Process using another Table to select gateway host
 or
 – Process using appropriate/specific PSTN gateway
• Else…
 – Process using generic PSTN gateway
ENUM Routing Algorithm - 1

• Phase 1 - ENUM DNS Query
 – Convert Destination Number to ENUM domain
 – Send DNS query to ENUM domain for NAPTR RRset
 – Get DNS Response and check RCODE
 – If RCODE<>0 .or. N.answers == 0, exit to [PSTN]
 – Else…
 • strip all but E2U NAPTRs that have supported Enumservices
 • If none left, exit to [PSTN]
 • sort remaining NAPTRs on ORDER/PREFERENCE value
 • Pick “top” one

 Note: A common Phase 2 scheme was considered but not implemented in the trial - each Carrier used its own method to process SIP URIs

• [PSTN] - (use existing gateway processing to deliver call onwards to destination via PSTN)
Background: ENUM Routing Algorithm - 2A(i)

- Phase 2 - Finding destination SIP Proxy/B2BUA
 - Extract domainpart from selected ENUM NAPTR
 - Send DNS query to domainpart of selected NAPTR
 - Get DNS Response and check RCODE
 - If RCODE<>0, exit to [PSTN]
 - If N.answers == 0
 - Send DNS query to _sip._udp.<domainpart> for SRV
 - Else…
 - Select appropriate entry in RRset (D2U or D2T or …)
 - Extract target domain from D2x NAPTR
 - Send DNS query to D2x NAPTR target domain for SRV
 - Get DNS Response and check RCODE
 - If RCODE <> 0 .or. N.answers == 0, exit to [PSTN]
 - Else…
Background: ENUM Routing Algorithm - 2A(ii)

• (at this point, client has SRV for this SIP domain)
 – Extract Target Hostname and port

• *Scan internal host table for pre-arranged Security Associations, or select default connection type*
Background: ENUM Routing Algorithm - 2B

- Phase 2 bis - Finding SIP Proxy/B2BUA in table
 - Scan internal table for this SIP domainpart, looking for gateway (hostname and port)
 - If not found, exit to [PSTN]
 - Else...

- Scan internal host table for pre-arranged Security Associations, or select default connection type

Note: Common Phase 2 method was considered but not implemented in the trial - each Carrier used its own method to process SIP URIs
Trial Performance Results

<table>
<thead>
<tr>
<th>Call Type</th>
<th>ENUM Processing</th>
<th>Prefix Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>CarrierA->CarrierA</td>
<td>2.33 seconds</td>
<td>2.28 seconds</td>
</tr>
<tr>
<td>CarrierA->CarrierB</td>
<td>2.23 seconds</td>
<td>2.25 seconds</td>
</tr>
<tr>
<td>CarrierA->PSTN</td>
<td>4.11 seconds</td>
<td>3.79 seconds</td>
</tr>
<tr>
<td>CarrierB->CarrierB</td>
<td>2.18 seconds</td>
<td>2.05 seconds</td>
</tr>
<tr>
<td>CarrierB->CarrierA</td>
<td>2.19 seconds</td>
<td>2.19 seconds</td>
</tr>
<tr>
<td>CarrierB->PSTN</td>
<td>3.95 seconds</td>
<td>3.41 seconds</td>
</tr>
</tbody>
</table>

Note: these are correct average performance figures for the trial. I-D will be updated to correct *my* transcription errors (apologies).
Trial Lessons

– Carriers know that call setup with ENUM works
– Centralised Provisioning System with EPP was OK for this trial, but not appropriate for full commercial service
– Combined Tier1/Tier2 avoided Carrier concerns:
 • Not relying on another carrier to meet their performance requirements, and had defined responsibility for problems
 • RFC 3263 provisioning and publication is an issue; how does this fit with centralised T1/T2 ENUM service?
– Trial did not cover:
 • Number Portability: process for transfer of responsibility for ENUM domain from one carrier to another is considered in future work
 • VoIP-only numbers - trial always passed unknown destination number to PSTN for processing. This needs further work
 • Multi-entry ENUM domains - trial supported EDNS0, but some DNS servers do not do this yet (=> RCODE 5 responses)
Migration Issues - 1

• Centralised T1/T2 was not an issue. Ensuring resilience may be in the long term. … Both may be issues for other Countries and regulatory regimes
• Provisioning every number in ENUM will be a scaling challenge
• ENUM provisioning should be integrated with each carrier’s customer provisioning system
• Globally accessible DNS entries are a security and privacy concern - why have public access?
Migration Issues - 2

• ENUM is a mission-critical system, and problems must be isolated:
 • How to ensure that timeouts do not push up call setup times?
 • How to ensure that excessive queries do not degrade authoritative server performance?
 • How to publish and propagate changes quickly, whilst limiting query traffic?
• With full commercial service and many carriers, number portability is already an issue
• Special processing for VoIP-only numbers may need a way to indicate unused numbers so that PSTN processing is not tried
 • provisioning “unused” ENUM entries may be a solution
 • but… this risks exposing carrier-sensitive information
Current Work

• As mentioned, Number Portability was not covered in this first performance trial. However…
 – This year there are two expanded & interconnected trials covering NP in Korea and China - one managed by NIDA and one by CNNIC
 – These use ENUM entries for NP (i.e. to port a telephone number, the corrected entry **must** be in ENUM or there must be **no** ENUM entry at all)
 – Both systems still uses a common T1/T2 scheme
 – The ported-to carrier requests provisioning of a new SIP URI into the appropriate ENUM domain
 – ENUM provisioning authority with NP is treated similarly to a registration transfer for a .kr or .cn domain.
Your Experiences Needed

• This is a summary of the first Korean ENUM trial. There are other trials and commercial markets “out there” so WE NEED YOUR HELP

• Your trial (or commercial) experiences are sought:
 – We would like to add these to the draft as guidance for others before the final version is published
 – This is scheduled for completion by the next IETF70 meeting in December so comments are welcome ASAP
 – Please contact me (or the other authors) and we will try to capture these experiences in the final version.

Thanks! Questions?