K-root and DNSSEC

Wolfgang Nagele
RIPE NCC
RIPE NCC

- One of the five Regional Internet Registries
- Provides IP address and AS number resources to Europe and Middle-East regions
- DNS related work
 - Parent reverse DNS zones for allocations from IANA
 - Tier-0 ENUM delegations
 - AS112 server for queries of private RFC1918 space
 - Own zones DNSSEC signed since 2005
 - Secondary service for developing country ccTLD's
K-root

• One of the 13 DNS root-servers operated by the RIPE NCC since 1997
 - Anycast cluster of 18 instances
 - See: http://k.root-servers.org
Root-servers

- Operated by 12 independent organizations
 - Currently 200 servers deployed
 - See: http://root-servers.org
Some security concerns of DNS

- UDP based – address spoofing
- Neither transport nor content is secure
- Protocol design limitations
 - 16-bit query ID
 - 512 bytes of payload
- Fast hardware and networks make attacks trivial
 - Misdirect clients
 - Steal personal data (passwords, account numbers)
One solution: DNSSEC

- DNSSEC = DNS SECurity
- Introduces cryptographic security for content
- Been in development within IETF for about 10 years
- Uses Public Key Cryptography
 - Content is signed by private key
 - Clients on the Internet have the public key for validation
DNSSEC in the DNS Root Zone

• The IETF considers DNSSEC to be mature enough to be deployed in the root zone

• In 2009, NTIA asked Verisign and ICANN to sign the root zone

• Much work going on, with progress updates at http://root-dnssec.org

• Verisign and ICANN coordinating deployment with root-server operators
Consequences of DNSSEC

- Security comes at a price
 - DNS responses carry signatures and are bigger
 - Many responses are bigger than 512 bytes
 - Clients would have had to fall back to TCP

- IETF created DNS extensions to allow for larger packets (EDNS0)
 - Increase 512 byte limit of current UDP datagrams
 - In theory, it allows DNS speakers to use 4 kB buffers
 - The reality is quite different!
Large DNS Packets

• Some devices and software still enforce the 512-byte limit on DNS and/or UDP packets

• Path MTU limits cause packet fragmentation
 - Some firewalls block fragments
 - Originating servers don’t always get back “fragmentation needed” messages due to ICMP filtering

• TCP fallback not practical because of a large number of queries
 - TCP not suitable in anycast setups
Staged Roll-out

• Prevents a “big bang” situation
• Clients which have problems will switch to another root server
• Gives people time to upgrade software and networks while still receiving DNS service
• Allows Verisign, ICANN, root-server operators and researchers to observe the effects and make informed decisions
DURZ

- Deliberately Unverifiable Root Zone
- Signed zone with dummy keys
- Ensures that no-one depends upon it
- Can be withdrawn quickly without breaking service
- Real keys will be published after all root servers are serving a signed root zone
Dummy keys

• Prevent manual fetching of trust anchors

. 3600 IN DNSKEY 257 3 8 (AwEAAa8Zp+++++THIS/IS/IN/AN/INVALID/
KEY/AND/CANNOT/BE/USED/FOR/VALIDATION
PLEASE/CONTACT/ROOTSIGN/AT/ICANN/D
OT/ORG/FOR/MORE/INFORMATION+++++++++
+++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++8=
)

; Key ID = 42
Deployment Timeline

By letter:

• L: 27th January 2010
• A: 10th February 2010
• M, I: 3rd March 2010
• D, K, E: 24th March 2010
• B, H, C, G, F: 14th April 2010
• J: 5th May 2010

Trust anchor publish date: 1st July 2010
K-root Preparation

• Upgrade to NSD 3.2.4
 - Has options for tuning TCP connection limits and buffer sizes
 - Clears the DF (don’t fragment) bit on response packets – allows routers to fragment large packets

• Network upgrades
 - Upgrade to Gigabit Ethernet ports at global instances

• Co-operation with NLNet Labs on load testing of our K-root setup
Monitoring and Data Collection

• Upgraded DSC to report TCP connection rates
• Enhanced pcap filter to capture TCP queries and responses
• Special pcap filter to capture just priming queries
• Mini-DITL runs to upload pcap data to OARC before and after each root-server publishes signed zone
• Reply-size tester deployed at global instances
Reply-size Testing

• Code by Duane Wessels of OARC
• `dig +short txt test.rs.ripe.net [@resolver]`
• Hidden HTML element on RIPE homepage triggers the same query
• Java application on http://labs.ripe.net to perform the same test
• Helps users to figure out a reasonable buffer size for their resolvers
Tuning EDNS buffer size

• BIND and Unbound default is 4096 bytes
• For BIND 9, use “edns-udp-size n;” in options clause in named.conf
• For Unbound 1.4.0+, use “edns-buffer-size: n” in unbound.conf
• Allow TCP/53 connections through your firewall
Non-DNSSEC-aware Resolvers

x.x.x.x lacks EDNS, defaults to 512
x.x.x.x summary bs=512, rs=486, edns=0, do=0

- These resolvers are unaware of DNSSEC
- Will continue to receive DNS responses without signatures
- PowerDNS recursor, djbdns
- BIND with “dnssec-enable no;” in options clause
Public Awareness

• Articles on RIPE Labs and in Member Update
• Presentations at technical meetings and conferences
• Outreach to ISPs and network community
Questions?