
Penetration Test Report:

DENIC ID

Version: 1.2

Dr.-Ing. Juraj Somorovsky

Phone: (+49)(0)234 / 45930961

E-Mail: juraj.somorovsky@hackmanit.de

July 17, 2019

Project Information

Customer: DENIC eG
Kaiserstraÿe 75 - 77
60329 Frankfurt am Main, Deutschland

Contact: Marcos Sanz

Commissioned to: Hackmanit GmbH
Universitätsstraÿe 150
44801 Bochum, Germany

Project executive: Dr.-Ing. Juraj Somorovsky
Phone: (+49)(0)234 / 45930961
Fax: (+49)(0)234 / 45930960
E-Mail: juraj.somorovsky@hackmanit.de

Project members: Karsten Meyer zu Selhausen (Hackmanit GmbH)
Dr.-Ing. Vladislav Mladenov (Hackmanit GmbH)
Mario Korth (Hackmanit GmbH)

Project period: 11.03.2019 � 19.03.2019

Version of the report: 1.2

This report was technically veri�ed by Dr.-Ing. Vladislav Mladenov.
This report was linguistically veri�ed by David Herring.

Hackmanit GmbH
Represented by: Prof. Dr. rer. nat. Jörg Schwenk, Dr.-Ing. Juraj Somorovsky,
Dr.-Ing. Christian Mainka, Dr.-Ing. Marcus Niemietz
Register court: Bochum, Germany
Register number: 14896

1

Contents

Contents

1 Summary 4

2 Project Timeline 5

3 Methodology 5

4 General Conditions and Scope 6

5 Scenario Description 7

6 Overview of Weaknesses and Recommendations 11

7 Weaknesses 15

7.1 H01 Signature Exclusion at the Identity Agent 15
7.2 M01 Insu�cient Clickjacking Protections 16
7.3 M02 User Enumeration . 17
7.4 M03 Missing Binding Between HTTP Parameter sessionID and Session

Cookies . 18
7.5 M04 Insu�cient Cross-site Request Forgery Protection 20
7.6 M05 Faulty Session Management . 21
7.7 M06 Identity Authority Allows HTTP Redirect URIs 22
7.8 L01 Missing Brute Force Protections . 23
7.9 L02 Denial-of-Service Attack at the Identity Agent 23
7.10 I01 Information Disclosure on the Consent Page 24

8 Recommendations 26

8.1 R01 Issue a New Access Token to Access the Identity Agent at Userinfo
Endpoint . 26

8.2 R02 Implement Access Tokens as One-Time-Use Tokens at Identity Agent 26
8.3 R03 Revoke Authorization Code When It Is Redeemed Using False Client

Credentials . 27
8.4 R04 Revoke Tokens If the Related Authorization Code Is Redeemed a

Second Time . 27
8.5 R05 Revoke Tokens When the User Changes his Password 28
8.6 R06 Implement Refresh Tokens as One-Time-Use Tokens 28
8.7 R07 Revoke Tokens When a Refresh Token Is Redeemed a Second Time . 28
8.8 R08 Prevent Concurrent Logins . 29
8.9 R09 Secure Cookies with HttpOnly Flag 29
8.10 R10 Secure Cookies with Secure Flag . 29
8.11 R11 Enforce HTTP Stricts Transport Security 29
8.12 R12 Restrict Cross-Origin Resource Sharing to Whitelist 30
8.13 R13 Enable Content Security Policy . 30
8.14 R14 Set XSS Protection HTTP Header 30

2

Contents

8.15 R15 Disable Referer HTTP Header . 31
8.16 R16 Disable Content Type Sni�ng . 31
8.17 R17 Set Cache Control HTTP Headers 31
8.18 R18 Use Discovery Mechanism at Identity Agent 32

9 Further Evaluations 33

9.1 OpenID Connect Parameters . 33
9.2 Authorization Code . 33
9.3 Access Token . 34
9.4 Refresh Token . 35
9.5 Client Registration Endpoint . 35
9.6 End Session Endpoint . 36
9.7 Introspection Endpoint . 36
9.8 Revocation Endpoint . 37
9.9 Token Endpoint . 37
9.10 Userinfo Endpoints . 38
9.11 Updating Stored Claims . 39
9.12 Open Redirects . 40
9.13 Cross-site Scripting . 40
9.14 XML-based Attacks . 41
9.15 TLS Con�guration . 41

3

1 Summary

1 Summary

DENIC ID is the �rst widely-deployed implementation of the ID4me protocol [1]. ID4me
is a novel protocol for federated identity management, of which the two main goals are
to provide (1) Authorization of a user for access to any third party accepting ID4me
identi�ers and (2) Controlled communication of the user's personal information to the
third parties accessed by the user [1]. ID4me is based on well-established standards such
as OpenID Connect [12] and Domain Name System (DNS) [4].

Hackmanit GmbH was commissioned to perform a penetration test of DENIC ID. After an
initial kick-o� meeting at the o�ce of DENIC eG in Frankfurt am Main, the penetration
test was performed remotely with a total expense of 11 man-days.

Weaknesses. During the penetration test, one weakness classi�ed as High and �ve
weaknesses classi�ed as Medium were identi�ed. The highest ranked weakness targeted
the identity agent. Instead of enforcing that the access token (which is a JWT) contains
a signature from the identity authority, the identity agent accepted access tokens which
do not contain any signature at all. This allowed an attacker to craft his own access
tokens and use them to access the stored personal information of arbitrary users. Another
mentionable weakness, which was identi�ed at the identity authority, allowed an attacker
to log a victim into his account. Depending on the service provided by the relying party
this might result in the victim revealing personal information or �les to the attacker.

Both weaknesses described above were already �xed by updates of the identity authority
and identity agent during the penetration test. According to DENIC, all remaining weak-
nesses classi�ed as Medium were �xed by the end of June. In our retests, we tested and
successfully veri�ed the correctness of three countermeasures (H01, M03, and M05).

Additionally, we strongly recommend �xing the weaknesses classi�ed as Low and Infor-
mation as well as to implement the recommendations given in Section 8 to improve the
overall security of the tested systems.

Structure. The report is structured as follows: In Section 2, the timeline of the penetra-
tion test is listed. Section 3 introduces our methodology, and Section 4 explains the general
conditions and scope of the penetration test. In section 5, the scenario of the penetration
test is described in detail. Section 6 provides an overview of the identi�ed weaknesses and
further recommendations. In Section 7, all identi�ed weaknesses are discussed in detail
and speci�c countermeasures are described. Section 8 summarizes our recommendations
resulting from observations of the application. Finally, Section 9 lists additional tests that
have not revealed any weaknesses.

4

3 Methodology

2 Project Timeline

The penetration test was performed between the 11.03.2019 and 19.03.2019 remotely after
an initial kick-o� meeting in Frankfurt am Main on 11.03.2019. Four penetration testers
with di�erent technical backgrounds were involved with a total expense of 11 man-days.

Additionally, weakness M05 was reevaluted during a retest on 07.06.2019.

3 Methodology

Among others, the following tools were used for the penetration test:

Tool Link

Mozilla Firefox https://www.mozilla.org/de/firefox/

Google Chrome https://www.google.com/intl/de_ALL/chrome/

Burp Suite Professional https://portswigger.net/burp

testssl.sh https://testssl.sh/

TLS-Attacker https://github.com/RUB-NDS/TLS-Attacker

TLS-Scanner https://github.com/RUB-NDS/TLS-Scanner

Self-developed tools -

Risk Rating. Each weakness has its own CVSS 3 base score rating (Common Vulner-
ability Scoring System Version 3 Calculator).1,2 Based on the CVSS 3 base score, the
following weaknesses assessment is performed:

0.0 � 3.9: Low
4.0 � 6.9: Medium
7.0 � 8.9: High
9.0 � 10.0: Critical

1https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
2http://www.first.org/cvss/cvss-guide

5

https://www.mozilla.org/de/firefox/
https://www.google.com/intl/de_ALL/chrome/
https://portswigger.net/burp
https://testssl.sh/
https://github.com/RUB-NDS/TLS-Attacker
https://github.com/RUB-NDS/TLS-Scanner
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
http://www.first.org/cvss/cvss-guide

4 General Conditions and Scope

4 General Conditions and Scope

The scope of the black-box penetration test included the ID4me implementation of
DENIC, DENIC ID, as well as the userinfo endpoint of the identity agent. Therefore,
the test covered the following endpoints:

• Authorization endpoint: id.test.denic.de/login

• Token endpoint: id.test.denic.de/token

• Client registration endpoint: id.test.denic.de/clients

• Introspection endpoint: id.test.denic.de/token/introspect

• Revocation endpoint: id.test.denic.de/token/revoke

• Userinfo endpoints: id.test.denic.de/userinfo, api-beta.id4me.ionos.com/userinfo

• End session endpoint: id.test.denic.de/logout

Additionally, two web front ends were in the scope of the penetration test: the dashboard
at the identity authority, and the front end for the user login and claims con�rmation at
the authorization endpoint. Therefore, in addition to the endpoints above, the following
uniform resource l6ocators (URLs) were in the scope of the penetration test:

• https://id.test.denic.de/

• https://id.test.denic.de/authenticate

• https://id.test.denic.de/consent

• https://id.test.denic.de/dashboard/*

The dashboard URL provides several additional functions, for example, login, logout, ac-
count activation, or management of identities.

This resulted in the following cookies being within the scope of the penetration test:

• sub_sid_current

• sub_sid_XXX

• SESSIONID

6

5 Scenario Description

5 Scenario Description

DENIC ID is an implementation of ID4me [1] � an �Open, Global, Federated Standard For
The Digital Identity Management�.3 It is based on established standards such as OpenID
Connect and DNS. In contrast to other Single Sign-On (SSO) schemes, ID4me divides
the duties of the identity provider (IdP) into two separated entities: an identity agent
and an identity authority. The identity agent provides registration services and manages
user data. The identity authority is responsible for user authentication and authorization.
This role separation results in the following four entities being involved in a login process
based on ID4me:

User A user utilizing ID4me to log in at an online service. His user account is associated
with an ID4me identi�er.

Relying party An online service which supports logins using an ID4me identi�er.

Identity agent The entity providing ID4me services to the user. This includes the regis-
tration and management of ID4me identi�ers as well as storage and distribution of
the user's personal data to relying partys in so-called �claims�.

Identity authority The entity responsible for user authentication and for ensuring that
the user authorized the speci�c relying party to access his personal information.

ID4me identi�ers are used to identify the user when he/she wants to log in at a rely-
ing party. An ID4me identi�er can be any hostname identi�ed by a valid DNS entry
which contains a TXT record. This record speci�es the responsible identity authority and
identity agent.

The process of registering a new ID4me identi�er was not in the scope of this penetration
test. Therefore, it is not described here. Information on the process can be found in the
ID4me documentation [1].

The process of logging in at a relying party using an ID4me identi�er is depicted in
Figure 1 and described as follows:

1. The user starts the login process with the relying party by providing his ID4me
identi�er.

2. The relying party queries the DNS for the user's identi�er to acquire the responsible
identity authority and identity agent.

3. If the relying party is not already registered at the identity authority, it performs
Dynamic Client Registration [11] according to the OpenID Connect standard.

4. The relying party redirects the user to the identity authority. The user authenticates
at the identity authority and authorizes or rejects access to the claims requested by
the relying party on the consent page displayed by the identity authority.

3https://id4me.org/about/

7

https://id4me.org/about/

5 Scenario Description

Figure 1: Process of logging in at a relying party using an ID4me identi�er. The �gure is
taken from the o�cial ID4me documentation.4

5. The identity authority redirects the user back to the relying party and delivers
the Authorization Code to the relying party in this redirection. The relying party
redeems the Authorization Code at the token endpoint of the identity authority and
receives an access token. Listing 1 provides an example of an access token.

6. If the relying party wants to access claims in addition to the information present in
the access token, it queries the userinfo endpoint of the identity authority using the
access token. The identity authority makes use of the OpenID Connect distributed
claims mechanism5 and refers the relying party to the identity agent. The relying
party queries the userinfo endpoint of the identity agent using the access token.

7. If the access token is valid, the identity agent provides all claims which the relying
party is authorized to access according to the clm �eld of the access token. If there is
no information stored for a requested claim, the claim is omitted from the identity
agent's response.

4https://gitlab.com/ID4me/documentation/blob/1a8e464b42ef6f57e75ec3c7f1a23e878dbbe42d

/id4me%20Technical%20Overview%20v1.3.pdf
5https://openid.net/specs/openid-connect-core-1_0.html#AggregatedDistributedClaims

8

https://gitlab.com/ID4me/documentation/blob/1a8e464b42ef6f57e75ec3c7f1a23e878dbbe42d/id4me%20Technical%20Overview%20v1.3.pdf
https://gitlab.com/ID4me/documentation/blob/1a8e464b42ef6f57e75ec3c7f1a23e878dbbe42d/id4me%20Technical%20Overview%20v1.3.pdf
https://openid.net/specs/openid-connect-core-1_0.html#AggregatedDistributedClaims

5 Scenario Description

1 {

2 "kid": "FOvy",

3 "alg": "RS256"

4 }.

5 {

6 "sub": "Dvkf7Oy9SEqVgt+hPwY7K3mjInrC91L318KVwtsbfakhhNwqc7Thx0VRiPpj2RS7",

7 "id4me.identifier": "pentest.sanz.club",

8 "identifier": "pentest.sanz.club",

9 "id4me": "pentest.sanz.club",

10 "clm": [

11 "email",

12 "email_verified",

13 "preferred_username",

14 "name",

15 "nickname"

16],

17 "scope": [

18 "openid"

19],

20 "iss": "https:\/\/id.test.denic.de",

21 "exp": 1552397804,

22 "iat": 1552397204,

23 "jti": "_E16kF4MmwU",

24 "client_id": "sfa4ztr427bsm"

25 }.

26 *Signature*

Listing 1: Access token issued and signed by the identity authority (decoded).

While generally implementing ID4me, DENIC ID di�ers from the standard in some crucial
aspects. ID4me does not cover the trust relationship between the identity agent and the
identity authority; in ID4me every user is allowed to set up and operate his own identity
agent. DENIC ID is more speci�c in this regard and only supports pre-registered identity
agents which have a valid contract with the DENIC. Additionally, DENIC ID suggests
that a relying party does not trust every identity authority but only a list of prede�ned
authorities. This limits the degrees of freedom provided by ID4me but increases the
security by limiting the parties which can participate in the protocol and establishes more
trust between these parties.

For the penetration test, DENIC provided us with access to their DENIC ID test environ-
ment. This included access to their identity authority (id.test.denic.de) which consists of
two components: the dashboard (/dashboard) and the OpenID Connect endpoints, and an
identity agent (beta.id4me.ionos.de) and a relying party (hermes.open-xchange.com). The
identity authority provides the following endpoints:

• Authorization endpoint: /login

• Token endpoint: /token

• Client registration endpoint: /clients

• Introspection endpoint: /token/introspect

9

5 Scenario Description

• Revocation endpoint: /token/revoke

• Userinfo endpoint: /userinfo

• End session endpoint: /logout

The complete con�guration of the tested identity authority, including the locations of all
relevant endpoints, can be found at https://id.test.denic.de/.well-known/openid-
configuration.

We were also provided with the following two identi�ers already registered in the test
environment:

Identi�er Password sub Claim

pentest.sanz.club asdfasdf
Dvkf7Oy9SEqVgt+hPwY7K3mjInrC91L318KVwtsbfak
hhNwqc7Thx0VRiPpj2RS7

pentest2.sanz.club asdfasdf
+V95/459p4c0kvXAOlk2qCALizOEA+DK6e9sjJYVh4
Q+2Fp9OgoZSrxek+Zg8RZY

10

https://id.test.denic.de/.well-known/openid-configuration
https://id.test.denic.de/.well-known/openid-configuration

6 Overview of Weaknesses and Recommendations

6 Overview of Weaknesses and Recommendations

Risk Level Finding Reference

H01 Signature Exclusion at the Identity Agent:

The identity agent does not enforce the use of a
signed JWT. It accepts JWTs with missing signa-
tures.

Section 7.1, page 15

M01 Insu�cient Clickjacking Protections: The
identity authority does not employ su�cient protec-
tions against Clickjacking attacks.

Section 7.2, page 16

M02 User Enumeration: The login process of the dash-
board at the identity authority does not prevent user
enumeration.

Section 7.3, page 17

M03 Missing Binding Between HTTP Parameter

sessionID and Session Cookies: The identity au-
thority makes use of di�erent values to reference the
session of the user in the current authorization �ow
but does not bind these values to each other.

Section 7.4, page 18

M04 Insu�cient Cross-site Request Forgery Pro-

tection: The identity authority does not provide
su�cient protection against CSRF attacks.

Section 7.5, page 20

M05 Faulty Session Management: User sessions are
not invalidated upon logout on the identity author-
ity.

Section 7.6, page 21

M06 Identity Authority Allows HTTP Redirect

URIs: The identity authority allows �web� clients to
register redirect URIs which use the HTTP scheme
instead of enforcing the use of HTTPS.

Section 7.7, page 22

L01 Missing Brute Force Protections: The identity
authority does not enforce any protection mecha-
nisms against brute force attacks, allowing an at-
tacker to try to guess user's passwords.

Section 7.8, page 23

11

6 Overview of Weaknesses and Recommendations

L02 Denial-of-Service Attack at the Identity

Agent: The identity agent attempts to download
the complete JWKS �le, independently of its size
and structure.

Section 7.9, page 23

I01 Information Disclosure on the Consent Page:

The identity authority displays a stacktrace on the
consent page when the prompt parameter of the au-
thorization request is set to �select_account�.

Section 7.10, page 24

R01 Issue a New Access Token to Access the Iden-

tity Agent at Userinfo Endpoint: The identity
authority should issue a new access token in order
to access the identity agent at its userinfo endpoint.

Section 8.1, page 26

R02 Implement Access Tokens as One-Time-Use

Tokens at Identity Agent: The identity agent
should accept an access token only once in order to
access its userinfo endpoint.

Section 8.2, page 26

R03 Revoke Authorization Code When It Is Re-

deemed Using False Client Credentials: The
Authorization Code should be revoked when a token
request is received using false client credentials.

Section 8.3, page 27

R04 Revoke Tokens If the Related Authorization

Code Is Redeemed a Second Time: All rele-
vant tokens should be revoked if the token endpoint
receives an already redeemed Authorization Code.

Section 8.4, page 27

R05 Revoke Tokens When the User Changes his

Password: All tokens issued for one user should be
revoked when he/she changes his/her password at
the identity authority.

Section 8.5, page 28

R06 Implement Refresh Tokens as One-Time-Use

Tokens: Refresh Tokens should be invalidated when
they are redeemed at the token endpoint of the iden-
tity authority.

Section 8.6, page 28

12

6 Overview of Weaknesses and Recommendations

R07 Revoke Tokens When a Refresh Token Is Re-

deemed a Second Time: All relevant tokens
should be revoked if the token endpoint receives an
already redeemed refresh token.

Section 8.7, page 28

R08 Prevent Concurrent Logins: The authorization
endpoint should prevent concurrent logins.

Section 8.8, page 29

R09 Secure Cookies with HttpOnly Flag: Session cook-
ies should be protected by setting the HttpOnly �ag.

Section 8.9, page 29

R10 Secure Cookies with Secure Flag: Cookies should
be protected by setting the secure �ag.

Section 8.10, page 29

R11 Enforce HTTP Stricts Transport Security:

Servers should enforce the usage of HTTPS with the
Strict-Transport-Security HTTP header.

Section 8.11, page 29

R12 Restrict Cross-Origin Resource Sharing to

Whitelist: CORS should be restricted to a whitelist
of allowed origins at the userinfo endpoint.

Section 8.12, page 30

R13 Enable Content Security Policy: The Content
Security Policy should be enabled to increase the
application security.

Section 8.13, page 30

R14 Set XSS Protection HTTP Header: The X-XSS-

Protection HTTP header should be set with the ap-
propriate mode to increase the protection against
XSS attacks.

Section 8.14, page 30

R15 Disable Referer HTTP Header: The Referer
header should be disabled to prevent potential in-
formation leakage.

Section 8.15, page 31

R16 Disable Content Type Sni�ng: The X-Content-

Type-Options HTTP header should be set to prevent
content type sni�ng.

Section 8.16, page 31

R17 Set Cache Control HTTP Headers: Appropri-
ate cache control HTTP headers should be set to
prevent client-side caching.

Section 8.17, page 31

13

6 Overview of Weaknesses and Recommendations

R18 Use Discovery Mechanism at Identity Agent:

The identity agent should use the discovery mecha-
nism to determine the URL of the JWKS �le of the
identity authority.

Section 8.18, page 32

De�nitions:

Critical Risk Weaknesses classi�ed as Critical can be exploited with very lit-
tle e�ort by an attacker. They have very large negative e�ects
on the tested system, its users and data, or the system environ-
ment.

High Risk Weaknesses classi�ed as High can be exploited with little e�ort
by an attacker. They have a major negative impact on the
tested system, its users and data, or the system environment.

Medium Risk Weaknesses classi�ed as Medium can be exploited with medium
e�ort by an attacker. They have a medium negative impact on
the tested system, its users and data, or the system environ-
ment.

Low Risk Weaknesses classi�ed as Low can be exploited with great e�ort
by an attacker. They have little negative impact on the tested
system, its users and data, or the system environment.

Information Observations classi�ed as Information are usually no weak-
nesses. Examples of these observations are unusual con�gu-
rations and possibly unwanted behavior of the tested system.

Recommendation Recommendation identi�es measures that may increase the se-
curity of the tested system. Implementation is recommended,
but not necessarily required.

14

7 Weaknesses

7 Weaknesses

In the following sections we list the identi�ed weaknesses. Every weakness has an iden-
ti�cation name which can be used as a reference in the event of questions or during the
patching phase.

7.1 H01 Signature Exclusion at the Identity Agent

Exploitability Metrics Impact Metrics

Attack Vector (AV) Network Con�dentiality Impact (C) High

Attack Complexity (AC) Low Integrity Impact (I) None

Privileges Required (PR) None Availability Impact (A) None

User Interaction (UI) None

Scope (S) Unchanged

Subscore: 3.9 Subscore: 3.6

Overall CVSS Score: 7.5

Table 2: CVSS calculation of weakness H01 .

General Description. The userinfo endpoint of the identity agent can be used to
access the information about a user stored at the identity agent. In order to access this
information, the request must contain an access token in the Authorization HTTP header.
This access token is a JSON Web Token (JWT) issued and validly signed by the identity
authority. The identity agent veri�es the signature of the JWT and rejects requests
containing invalid signatures.

Weakness. The identity agent is vulnerable to Signature Exclusion attacks as it processes
requests with missing JWT signatures. This allows an attacker to access arbitrary user
data at the userinfo endpoint of the identity agent using manipulated JWTs. The identity
agent accepts these manipulated JWTs and delivers information about the user speci�ed
by the combination of the iss and sub values if available.

The attacker is able to craft access tokens on their own and use them to access the
stored information of arbitrary users, as long as the attacker knows the sub values for
the corresponding users at the identity authority. The attacker can either use a valid old
access token, remove the signature, and adjust the sub value and update the timestamps,
or build their own access token from scratch. An example of an access token (Base64Url-
encoded) which does not contain a signature but is still accepted by the identity agent is
given in Listing 2.

Note that the attack works independently of the used signature algorithm. The JWT
header can either contain the none algorithm or the RS256 algorithm. Therefore, this issue

15

7 Weaknesses

1 eyJraWQiOiJGT3Z5IiwiYWxnIjoiTm9uZSJ9.eyJzdWIiOiIrVjk1XC80NTlwNGMwa3ZYQU9sazJxQ0

FMaXpPRUErREs2ZTlzakpZVmg0USsyRnA5T2dvWlNyeGVrK1pnOFJaWSIsImlkNG1lLmlkZW50

aWZpZXIiOiJwZW50ZXN0Mi5zYW56LmNsdWIiLCJpZGVudGlmaWVyIjoicGVudGVzdDIuc2Fuei5

jbHViIiwiaWQ0bWUiOiJwZW50ZXN0Mi5zYW56LmNsdWIiLCJjbG0iOlsibmFtZSIsImdpdmVuX25

hbWUiLCJmYW1pbHlfbmFtZSIsImVtYWlsIl0sInNjb3BlIjpbIm9wZW5pZCJdLCJpc3MiOiJodHRwczpcL

1wvaWQudGVzdC5kZW5pYy5kZSIsImV4cCI6MTU1MjQ4NDk3NywiaWF0IjoxNTUyNDg0Mzc3

LCJqdGkiOiJFQ3hRY21LZEJJNCIsImNsaWVudF9pZCI6InZ5Z3ZxbXdvMmNvbzIifQ.

Listing 2: JWT without a signature used as an access token to access user information at
the identity agent (encoded). The signature header algorithm is set to none.

is not a mere con�guration �aw, and blacklisting the none algorithm would not prevent
the attack. The implementation needs to be updated so that the presence of the signature
is always veri�ed.

Countermeasures. We strongly recommend enforcing that all access tokens be signed
by the issuing identity authority using one of the algorithms speci�ed by RFC7518 (JSON
Web Algorithms (JWA)) [2, Section 3.1], except the none algorithm. Any request con-
taining an access token without a signature, specifying the usage of the none algorithm,
or with an invalid signature must be rejected. In all three cases the response should be a
general error message, e.g.: Missing or invalid signature!

Retest. An update of the identity agent was applied during the penetration test. We
can con�rm that this weakness has been successfully �xed. The identity agent rejects any
request containing an access token without a signature, or a header specifying the none

algorithm.

7.2 M01 Insu�cient Clickjacking Protections

Exploitability Metrics Impact Metrics

Attack Vector (AV) Network Con�dentiality Impact (C) High

Attack Complexity (AC) Low Integrity Impact (I) None

Privileges Required (PR) None Availability Impact (A) None

User Interaction (UI) Required

Scope (S) Unchanged

Subscore: 2.8 Subscore: 3.6

Overall CVSS Score: 6.5

Table 3: CVSS calculation of weakness M01 .

General Description. Clickjacking allows an attacker to trick the user into performing
clicks, and therefore, actions the user did not intend to perform [7]. To prevent this kind

16

7 Weaknesses

of attack, several security mechanisms exist, such as framebuster, the X-Frame-Options

HTTP header, and the Content Security Policy (CSP) option frame-ancestors.

Weakness. The identity authority does not employ any of the security mechanisms
listed above. Therefore, an attacker could use Clickjacking attacks to trick the victim
into performing arbitrary actions. For example, the victim can be tricked into consenting
to arbitrary claims.

Countermeasures. We recommend to employ all the security mechanisms listed above.
The reason for this is that older browsers may not support the CSP or the X-Frame-

Options HTTP header. Therefore, framebuster techniques should be used in addition to
these features in order to mitigate Clickjacking attacks. More details are provided in the
OWASP Clickjacking Defense Cheat Sheet [8].

7.3 M02 User Enumeration

Exploitability Metrics Impact Metrics

Attack Vector (AV) Network Con�dentiality Impact (C) Low

Attack Complexity (AC) Low Integrity Impact (I) None

Privileges Required (PR) None Availability Impact (A) None

User Interaction (UI) None

Scope (S) Unchanged

Subscore: 3.9 Subscore: 1.4

Overall CVSS Score: 5.3

Table 4: CVSS calculation of weakness M02 .

General Description. Di�erent behavior in the case of existing and non-existing user-
names (i.e., the user identi�er) allows an attacker to enumerate which accounts exist.
This information can be used for further attacks, such as guessing passwords online.

Weakness. The login process of the identity authority dashboard �rst requires the user
to enter his identi�er. If the identi�er exists, the dashboard asks the user for his password.
Otherwise, if the identi�er does not exist, an error message is displayed. This behavior
can be used to determine if an identi�er exists at the identity authority.6

Countermeasures. We recommend to adjust the behavior of the identity authority
such that it behaves in the same way in case of an existing and a non-existing identi�er.

6Due to the design of ID4me a discovery mechanism is necessary. This mechanism is vulnerable to user

enumeration in general, as it allows an attacker to determine whether an identi�er exists by querying

the responsible DNS server. As DNS servers are not in the scope of this penetration test, we cannot

consider the existence of a user enumeration weakness using DNS queries when rating this weakness.

17

7 Weaknesses

Additionally, we recommend displaying CAPTCHAs after a certain number of identi�ers
(e.g., �ve) was entered in the login form. This prevents automated user enumeration.

7.4 M03 Missing Binding Between HTTP Parameter sessionID and

Session Cookies

Exploitability Metrics Impact Metrics

Attack Vector (AV) Network Con�dentiality Impact (C) Low

Attack Complexity (AC) Low Integrity Impact (I) Low

Privileges Required (PR) Low Availability Impact (A) None

User Interaction (UI) Required

Scope (S) Unchanged

Subscore: 2.1 Subscore: 2.5

Overall CVSS Score: 4.6

Table 5: CVSS calculation of weakness M03 .

General Description. During the authorization �ow, the identity authority presents a
consent page to the user to let him decide whether he grants the requesting client access to
his information or not. This page contains a hidden form �eld called sessionID. The value
of this form �eld is used to reference the current authorization �ow and prevent Cross-
site Request Forgery (CSRF) attacks. The session of the user currently logged in at the
identity authority is referenced by the session cookies sub_sid_current and sub_sid_XXX.

Weakness. The values of sessionID and these session cookies are not bound to each
other. This allows an attacker to bypass the CSRF protection of the sessionID value; see

M04 for details on the insu�cient CSRF protection of the application.

Additionally, the identity authority uses both the value of the sub_sid_XXX session cookie
and value of the sessionID to determine which information should be stored in the access
token issued at the end of an authorization �ow.

The combination of this incorrect behavior and the missing binding between the value of
sessionID and the session cookies results in the following CSRF attack which allows an
attacker to log in a victim into his/her account:

1. An attacker starts an authorization �ow and uses his account at the identity au-
thority (e.g., �pentest.sanz.club�) to log in. When the identity authority displays the
consent page he does not proceed with the �ow but extracts the received sessionID

parameter.

2. He lures the victim to start a second authorization �ow and, if not already logged
in, to log in into its account (e.g., �pentest2.sanz.club�) at the identity authority.

18

7 Weaknesses

3. The attacker replaces the value of sessionID in the second authorization �ow with
the value obtained from his �rst authorization �ow and makes the victim con�rm
the consent page using a CSRF attack.

4. The identity authority creates an Authorization Code and delivers it to the relying
party using the victim's user agent (UA). The relying party redeems the Autho-
rization Code at the token endpoint of the identity authority and receives an access
token.

The access token received by the relying party contains a mismatch between the sub

and id4me.identifier �elds. A decoded example of such an access token is given in
Listing 3. While the �eld id4me.identifier references the user account of the victim
(�pentest2.sanz.club�) the sub �eld's value belongs to the attacker's account. This means
the identity authority uses the value of the sub_sid_XXX session cookie to determine the
value of the id4me.identifier �eld and the value of the sessionID to determine the value
of the sub �eld.

In the tested scenario, the identity agent behaves correctly and uses the combination
of the iss and sub �elds to identify a user account when its userinfo endpoint is called.
Therefore, the attack described above results in the victim being logged in the attacker's
account at the relying party. The victim might not recognize it is logged in an account
di�erent from its own, and uses the services provided by the relying party as it usually
would. Depending on these services, the impact of the attack di�ers. For example, the
relying party could provide an upload function for personal �les and documents. The
victim would upload its private �les to the attacker's account, allowing him to access
them later.

Countermeasures. We recommend binding the sessionID value to user's current session
at the identity authority. The session is referenced by the session cookies sub_sid_current

and sub_sid_XXX. Every request with inconsistent values should be rejected. This prevents
the attack described above and enables sessionID to serve as an e�ective CSRF protection.
Additionally, we recommend not using the value of sessionID to identify the currently
logged in user. Instead, the value should only reference the current authorization �ow
and the logged in user should only be identi�ed by the session cookies sub_sid_current and
sub_sid_XXX. All user-speci�c information contained in the access token should only depend
on the user identi�ed by session cookies as a way to prevent mismatching information in
the access token.

Retest. An update of the identity authority was applied during the penetration test.
We can con�rm that this weakness has been successfully �xed. The identity authority
binds the value of sessionID to the session cookies sub_sid_current and sub_sid_XXX. If the
request con�rming the consent page contains a sessionID which does not match the user
associated with the session cookies sub_sid_current and sub_sid_XXX, the identity authority
rejects the request and does not issue any Authorization Code.

19

7 Weaknesses

1 {

2 "sub": "Dvkf7Oy9SEqVgt+hPwY7K3mjInrC91L318KVwtsbfakhhNwqc7Thx0VRiPpj2RS7",

3 "id4me.identifier": "pentest2.sanz.club",

4 "identifier": "pentest2.sanz.club",

5 "id4me": "pentest2.sanz.club",

6 "clm": [

7 "name",

8 "given_name",

9 "family_name",

10 "email"

11],

12 "scope": [

13 "openid"

14],

15 "iss": "https://id.test.denic.de",

16 "exp": 1552480414,

17 "iat": 1552479814,

18 "jti": "eop0u3L2OVE",

19 "client_id": "vygvqmwo2coo2"

20 }

Listing 3: An example body of an access token which was issued by the identity authority
when the attack described above is executed (decoded). The value of the
sub �eld belongs to a di�erent user account (pentest.club.sanz) than the one
speci�ed by the id4me.identifier.

7.5 M04 Insu�cient Cross-site Request Forgery Protection

Exploitability Metrics Impact Metrics

Attack Vector (AV) Network Con�dentiality Impact (C) Low

Attack Complexity (AC) Low Integrity Impact (I) None

Privileges Required (PR) None Availability Impact (A) None

User Interaction (UI) Required

Scope (S) Unchanged

Subscore: 2.8 Subscore: 1.4

Overall CVSS Score: 4.3

Table 6: CVSS calculation of weakness M04 .

General Description. Cross-site Request Forgery (CSRF) is an attack in which an
attacker tricks his victim into performing authenticated commands that changes the ap-
plication state [6]. The attack is possible since browsers automatically attach cookies to
every application HTTP request, regardless of the request origin. Therefore, it's impossi-
ble for the server application to distinguish between a valid user-initiated request and an
invalid request which was not initiated with the user's consent.

20

7 Weaknesses

Weakness. The dashboard of the identity authority does not apply any CSRF protection.
For instance, an attacker could abuse this to disable the victim's account at the identity
authority. Additionally, the CSRF protection mechanism present on the authorization
endpoint is �awed, as the sessionID is not bound to the session cookies sub_sid_current

and sub_sid_XXX. This allows an attacker to bypass the CSRF protection using a sessionID

obtained with his own account. Details for this weakness can be found in M03 .

Countermeasures. We recommend adding CSRF protection to all parts of the identity
authority which allow to execute crucial actions. We also recommend binding the value
of sessionID to the user's current session at the identity authority, which is referenced
by the session cookies sub_sid_current and sub_sid_XXX, and reject every request which
contains values not bound to each other. This enables sessionID to serve as an e�ective
CSRF protection and prevents the attack described in M03 .

Additionally, adding the SameSite �ag to cookies should be considered, where applicable.
In the strict mode, SameSite cookies are only sent if the request's origin is the website
itself. In the lax mode, SameSite cookies are also sent if the user follows a regular link.

7.6 M05 Faulty Session Management

Exploitability Metrics Impact Metrics

Attack Vector (AV) Physical Con�dentiality Impact (C) High

Attack Complexity (AC) Low Integrity Impact (I) None

Privileges Required (PR) None Availability Impact (A) None

User Interaction (UI) Required

Scope (S) Unchanged

Subscore: 0.7 Subscore: 3.6

Overall CVSS Score: 4.3

Table 7: CVSS calculation of weakness M05 .

General Description. Proper session management requires that sessions are invalidated
upon logout. OWASP states that �if a session can still be used after logging out then the
lifetime of the session is increased and that gives third parties that may have intercepted
the session token more (or perhaps in�nite, if no absolute session expiry happens) time to
impersonate a user.�7 Users might want to log out at the identity authority for di�erent
reasons and should be able to terminate their sessions. One of the more obvious reasons is
the use of public computers on which users might not use the private mode. Being unable
to log out increases the risk that the user's session is compromised and an attacker takes
over the user's account [5].

7https://owasp-aasvs.readthedocs.io/en/latest/requirement-3.2.html

21

https://owasp-aasvs.readthedocs.io/en/latest/requirement-3.2.html

7 Weaknesses

Weakness. The identity authority does not invalidate the session of the user if the user
states that he/she is not the person displayed. Additionally, the identity authority does
not provide any way to the user to log out of his/her current session.

Countermeasures. We recommend to not only unset the cookies in the user's browser,
but also to invalidate the session on the identity authority upon logout, and when the
user states he/she is not the owner of the account displayed (�not-me�). Additionally, an
explicit logout function should be provided to the user, and the identity authority might
want to implement the end session endpoint in order to allow relying partys to initiate a
logout at the identity authority.

Retest. During a retest on 07.06.2019, we reevaluated this weakness. We discovered
that the �not-me� button now properly invalidates the users session at the authorization
endpoint. However, there was still no explicit logout option which the user can use to log
out from the identity authority.

7.7 M06 Identity Authority Allows HTTP Redirect URIs

Exploitability Metrics Impact Metrics

Attack Vector (AV) Network Con�dentiality Impact (C) Low

Attack Complexity (AC) High Integrity Impact (I) Low

Privileges Required (PR) None Availability Impact (A) None

User Interaction (UI) Required

Scope (S) Unchanged

Subscore: 1.6 Subscore: 2.5

Overall CVSS Score: 4.2

Table 8: CVSS calculation of weakness M06 .

General Description. During the process of dynamic client registration, it is possible
to specify the type of client by using the parameter application_type. Valid values for
the parameter are �native� and �web�. According to the ID4me standard, �native� clients
must use custom URI schemes or the HTTP scheme with the hostname localhost as
redirect_uri. �Web� clients, however, must not use the HTTP scheme but rather the
HTTPS scheme, and are not allowed to use the localhost hostname.

Weakness. When registering a �web� client, the identity authority does not enforce the
use of the HTTPS scheme for the redirect_uri but also allows the use of the HTTP
scheme.

Countermeasures. We recommend enforcing the use of the HTTPS scheme for redirect
URIs of �web� clients. Client registration requests for �web� clients containing a redirect

22

localhost
localhost

7 Weaknesses

URI, which uses the HTTP scheme or the hostname localhost, should be rejected by
the identity authority.

7.8 L01 Missing Brute Force Protections

Exploitability Metrics Impact Metrics

Attack Vector (AV) Network Con�dentiality Impact (C) Low

Attack Complexity (AC) High Integrity Impact (I) None

Privileges Required (PR) None Availability Impact (A) None

User Interaction (UI) None

Scope (S) Unchanged

Subscore: 2.2 Subscore: 1.4

Overall CVSS Score: 3.7

Table 9: CVSS calculation of weakness L01 .

General Description. Brute force attacks rely on the sheer amount of tries to �nd the
correct input. To prevent these kind of attacks, countermeasures such as CAPTCHAs
and account lockouts exist.

Weakness. The identity authority does not prevent brute force attacks on user pass-
words. An attacker can make unthrottled guesses for a user's password, and if the pass-
word is correctly guessed, the attacker can log into the user's account.

Countermeasures. We recommend implementing CAPTCHAs to prevent automated
brute force attacks. We discourage the implementation of account lockouts since these
can be abused for Denial of Service (DoS) attacks.

7.9 L02 Denial-of-Service Attack at the Identity Agent

Exploitability Metrics Impact Metrics

Attack Vector (AV) Network Con�dentiality Impact (C) None

Attack Complexity (AC) High Integrity Impact (I) None

Privileges Required (PR) None Availability Impact (A) Low

User Interaction (UI) None

Scope (S) Unchanged

Subscore: 2.2 Subscore: 1.4

Overall CVSS Score: 3.7

Table 10: CVSS calculation of weakness L02 .

23

localhost

7 Weaknesses

General Description. The identity agent attempts to access the JWKS �le of an identity
authority upon receiving an access token at the userinfo endpoint in order to verify the
signature of the access token. Instead of using the discovery mechanism to determine the
JWKS URL, the identity agent directly requests the JWKS �le at *IdentityAuthority
URL*/jwks.json.

Weakness. During the penetration test, it was possible to provide a 2.5 GB image �le
as the jwks.json to the identity agent. The identity agent started to download the image
�le and did not terminate the connection after a particular time or after a certain amount
of downloaded data occured. This behavior could result in a Denial-of-Service attack
when an attacker makes multiple requests to the userinfo endpoint, tricking the identity
agent into downloading multiple large �les and consuming network, memory, and other
resources of the identity agent.

Countermeasures. We recommend only downloading a reasonable amount of data
when the identity agent attempts to access the JWKS �le of an identity authority, and
terminating the connection if either the maximum amount of data is exceeded, or the
download is not �nished after a reasonable amount of time.

Retest. An update of the identity agent was implemented during the penetration test.
We can con�rm that this weakness has been successfully �xed. The identity agent ter-
minates the connection after a certain period of time instead of trying to download the
JWKS �les for an unlimited amount of time.

7.10 I01 Information Disclosure on the Consent Page

General Description. The authorization request to the identity authority can contain
an optional parameter called prompt. This parameter is used by the relying party to
indicate to the identity authority how it should handle active sessions of the user. Valid
values are: �login�, �consent�, �none�, and �select_account�.

Weakness. If the authorization request to the identity authority contains the parameter
prompt and is set to �select_account�, the consent page delivered by the identity authority
contains a stacktrace. The stacktrace reveals internal data to the public. An example of
the displayed stacktrace is depicted in Listing 4.

Countermeasures. We recommend never displaying internal error messages like stack-
traces to the user.

24

Identity Authority URL/jwks.json
Identity Authority URL/jwks.json

7 Weaknesses

1 FreeMarker template error (DEBUG mode; use RETHROW in production!):
2 The following has evaluated to null or missing:
3 ==> knownSession.id [in template "de/denic/domainid/authendpoint/view/login.ftl" at line 25, column 111]
4 ...
5 −−−−
6 FTL stack trace ("~" means nesting−related):
7 − Failed at: ${knownSession.id} [in template "de/denic/domainid/authendpoint/view/login.ftl" at line 25, column 109]
8 −−−−
9 Java stack trace (for programmers):

10 −−−−
11 freemarker.core.InvalidReferenceException: [... Exception message was already printed; see it above ...]
12 at freemarker.core.InvalidReferenceException.getInstance(InvalidReferenceException.java:134)
13 at freemarker.core.EvalUtil.coerceModelToTextualCommon(EvalUtil.java:467)
14 at freemarker.core.EvalUtil.coerceModelToStringOrMarkup(EvalUtil.java:389)
15 at freemarker.core.EvalUtil.coerceModelToStringOrMarkup(EvalUtil.java:358)
16 at freemarker.core.DollarVariable.calculateInterpolatedStringOrMarkup(DollarVariable.java:100)
17 at freemarker.core.DollarVariable.accept(DollarVariable.java:63)
18 at freemarker.core.Environment.visit(Environment.java:366)
19 at freemarker.core.IteratorBlock$IterationContext.executedNestedContentForCollOrSeqListing(IteratorBlock.java:317)
20 at freemarker.core.IteratorBlock$IterationContext.executeNestedContent(IteratorBlock.java:271)
21 at freemarker.core.IteratorBlock$IterationContext.accept(IteratorBlock.java:242)
22 at freemarker.core.Environment.visitIteratorBlock(Environment.java:642)
23 at freemarker.core.IteratorBlock.acceptWithResult(IteratorBlock.java:107)
24 at freemarker.core.IteratorBlock.accept(IteratorBlock.java:93)
25 at freemarker.core.Environment.visit(Environment.java:330)
26 at freemarker.core.Environment.visit(Environment.java:336)
27 at freemarker.core.Environment.process(Environment.java:309)
28 at freemarker.template.Template.process(Template.java:384)
29 at io.dropwizard.views.freemarker.FreemarkerViewRenderer.render(FreemarkerViewRenderer.java:77)
30 at io.dropwizard.views.ViewMessageBodyWriter.writeTo(ViewMessageBodyWriter.java:81)
31 at io.dropwizard.views.ViewMessageBodyWriter.writeTo(ViewMessageBodyWriter.java:29)
32 at org.glass�sh.jersey.message.internal.WriterInterceptorExecutor$TerminalWriterInterceptor.invokeWriteTo(

WriterInterceptorExecutor.java:265)
33 at org.glass�sh.jersey.message.internal.WriterInterceptorExecutor$TerminalWriterInterceptor.aroundWriteTo(

WriterInterceptorExecutor.java:250)
34 at org.glass�sh.jersey.message.internal.WriterInterceptorExecutor.proceed(WriterInterceptorExecutor.java:162)
35 ...

Listing 4: Stacktrace displayed on the consent page when the prompt parameter of the
authorization request is set to �select_account�.

25

8 Recommendations

8 Recommendations

In the following sections we provide our recommendations to improve the security of the
tested system.

8.1 R01 Issue a New Access Token to Access the Identity Agent

at Userinfo Endpoint

General Description. When the relying party accesses the userinfo endpoint of the
identity authority using an access token, the identity authority makes use of the dis-
tributed claims feature and informs the relying party that the claims can be accessed at
the userinfo endpoint of the identity agent. In the current scenario, the relying party uses
the same access token to access the userinfo endpoint of the identity agent afterwards. The
identity agent does not use token introspection but directly validates the signature and
timestamps in the access token. If the access token is revoked at the identity authority,
the identity agent is not aware of this fact.

The following scenario adjustment could enable the identity authority to make sure re-
voked access tokens cannot be used to access the identity agent. Instead of re�ecting
the access token used to access its userinfo endpoint, the identity authority issues a new
access token and provides it to the relying party. This new access token needs to contain
a random and unique value for the jti �eld and an aud �eld matching the identity agent.
The identity agent must properly validate all security parameters of the access token (iss
, aud, jti, timestamps, and the signature). In combination with R02 , this adjustment
ensures that the relying party is not able to directly access the userinfo endpoint of the
identity agent; it is forced to �rstly access the userinfo endpoint of the identity authority
every time it wants to access user claims.

Recommendation. During the penetration test, DENIC informed us that in the future,
it is planned that when the relying party accesses the userinfo endpoint of the identity
authority, a new access token will be issued. We recommend implementing this adjustment
and issue a new as described above.

8.2 R02 Implement Access Tokens as One-Time-Use Tokens at

Identity Agent

General Description. When the relying party accesses the userinfo endpoint of the
identity agent, the identity agent does not use token introspection. The identity agent
does not know whether the access token has been revoked at the identity authority and
provides the requested claims to the relying party based upon the access token validity
(i.e., if it is not expired and the signature is valid). However, the following scenario
adjustment could enable the identity agent to ensure that revoked access tokens cannot be

26

8 Recommendations

used to access its userinfo endpoint. Instead of allowing an unlimited number of requests
to access the user claims within the validity period of an access token, each access token
should be accepted only once. As described in R01 , the access token intended to be used
to access the userinfo endpoint of the identity agent should contain a random and unique
jti value. The identity agent can then store this value for the validity period of an access
token in order to validate the freshness of additional access tokens. In combination with

R01 , this adjustment ensures that the relying party needs to �rstly access the userinfo
endpoint of the identity authority every time it attempts to access user claims, instead
of being able to directly access the userinfo endpoint of the identity agent. This enables
access token revocation to be e�ective in the analyzed scenario.

Recommendation. We recommend only accepting an access token and provide the
requested claims after successfully verifying that no access token with the same jti has
been received before.

8.3 R03 Revoke Authorization Code When It Is Redeemed

Using False Client Credentials

General Description. In order to redeem an Authorization Code at the identity author-
ity, valid client credentials are necessary. The credentials must belong to the relying party
which the Authorization Code is intended for. A token request which contains valid client
credentials for a relying party but an Authorization Code which was issued for another
client might indicate that the Authorization Code has been compromised. Therefore, the
Authorization Code should be invalidated in order to mitigate a possible attack.

Recommendation. We recommend invalidating the Authorization Code if the token
endpoint of the identity authority receives a token request with invalid client credentials
(i.e., the client credentials do not match the speci�c Authorization Code).

8.4 R04 Revoke Tokens If the Related Authorization Code Is

Redeemed a Second Time

General Description. When an Authorization Code is sent to the token endpoint of
the identity authority, tokens are issued to the sender and the Authorization Code is
invalidated. Redeeming the same Authorization Code at the token endpoint again is
not possible. However, this second attempt to redeem an Authorization Code might
indicate that the Authorization Code has been compromised. The identity authority
cannot determine whether the relying party or an attacker initiated the �rst or second
token request. Therefore, all tokens issued in response to the �rst token request should
be revoked in order to mitigate a possible attack.

27

8 Recommendations

Recommendation. We recommend revoking all tokens related to an Authorization Code
if a token request containing a previously redeemed Authorization Code is received at the
token endpoint of the identity authority.

8.5 R05 Revoke Tokens When the User Changes his Password

General Description. A user can use the dashboard of the identity authority to change
the password for his account. However, all tokens issued prior to the password change
are not revoked and can still be used to access both the userinfo endpoints of the identity
authority and the identity agent.

Recommendation. We recommend revoking all current tokens related to a user who
changes his password at the identity authority.

8.6 R06 Implement Refresh Tokens as One-Time-Use Tokens

General Description. When a refresh token is sent to the token endpoint of the identity
authority, a new access token and a new refresh token are issued to the sender. However,
the old refresh token is not invalidated and can be redeemed to obtain new tokens multiple
times. This increases the attack surface because a leaked refresh token can be used to
obtain new valid access and refresh tokens even if the leaked refresh token has been used
by the victim prior to the leak.

Recommendation. We recommend invalidating refresh tokens after they have been used
to obtain a new access and refresh token at the token endpoint of the identity authority.
Further information and recommendations on the protection of refresh tokens can be
found in the �OAuth 2.0 Security Best Current Practice� ' [3, section 4.12].

8.7 R07 Revoke Tokens When a Refresh Token Is Redeemed a

Second Time

General Description. Receiving multiple requests at the token endpoint containing
the same refresh token might indicate that the refresh token has been compromised.
Therefore, the identity authority should revoke all access tokens and refresh tokens related
to the refresh token when it receives a request containing this speci�c refresh token for
the second time.

Recommendation. We recommend revoking all tokens related to a refresh token if
the identity authority receives a request containing an already redeemed refresh token.
Further information and recommendations on the protection of refresh tokens can be
found in the �OAuth 2.0 Security Best Current Practice� [3, section 4.12].

28

8 Recommendations

8.8 R08 Prevent Concurrent Logins

General Description. If multiple valid sessions can exist for the same user at the
same time, this behavior is called concurrent logins. Concurrent logins make it harder
to detect if an account has been compromised and should be avoided unless absolutely
necessary [5].

Recommendation. We recommend preventing concurrent logins at the authorization
endpoint by invalidating all other active sessions upon a new login of one user.

8.9 R09 Secure Cookies with HttpOnly Flag

General Description. In most cases, the user's session on the server is associated with
a unique identi�er. This identi�er is usually stored within a cookie in the client's browser
and attached to every request to the corresponding website. An attacker, who wants
to obtain the user's session, could exploit a Cross-site scripting (XSS) vulnerability in
the target application and use the injected JavaScript code to steal the user's cookie. To
prevent an attacker from stealing the cookie, the HttpOnly �ag was introduced. It prevents
JavaScript from accessing cookies which were set using this �ag.

Recommendation. We recommend always setting sensitive cookies (including session
cookies) with the HttpOnly �ag. In particular, this a�ects the session cookies sub_sid_

current and sub_sid_XXX.

8.10 R10 Secure Cookies with Secure Flag

General Description. Cookies and their sensitive content might be leaked over insecure
(unencrypted) connections. The secure cookie �ag instructs browsers to only send cookies
over encrypted https connections.

Recommendation. We recommend always using the secure �ag unless it is inevitable
that the service can be used via an insecure http connection.

8.11 R11 Enforce HTTP Stricts Transport Security

General Description. HTTP Strict Transport Security (HSTS) was introduced to pre-
vent browsers from sending unsecured HTTP requests. It is enabled by setting the Strict

-Transport-Security HTTP header. This header contains a time value which indicates for
how long the website should only be accessed using HTTPS [9].

29

8 Recommendations

Recommendation. We recommend enabling HSTS on all pages by setting the following
HTTP header with an appropriate time-interval:

Strict-Transport-Security: max-age=[time-interval]; includeSubDomains

Additionally, it should be considered to apply for inclusion in Google Chromium's HSTS
preload list.8 This list is included in major browsers and speci�es domains which must
only be accessed using HTTPS. The advantage of the list is that for the �rst visit of the
user HSTS is already enforced by the browser.

8.12 R12 Restrict Cross-Origin Resource Sharing to Whitelist

General Description. Cross-origin resource sharing (CORS) is a mechanism to share
resources across domain boundaries. However, overly permissive CORS settings can lead
to security issues as JavaScript can access the respective endpoints from any domain. All
tested endpoints which have no web front end respond with valid CORS HTTP headers
and set the Access-Control-Allow-Origin header value to the request's Origin HTTP header
value.

Recommendation. We recommend implementing a whitelist of allowed origins instead
of using the Origin header for the Access-Control-Allow-Origin value.

8.13 R13 Enable Content Security Policy

General Description. The Content Security Policy (CSP) is a security mechanism that
is used to instruct the browser which actions are allowed on the website and which are
not. This covers locations from which resources might be loaded or which might frame the
website. Additionally, it can be used to allow or deny loading speci�c types of resources.

Recommendation. We recommend that the application applies a strict CSP to prevent
attacks such as XSS and Clickjacking.

8.14 R14 Set XSS Protection HTTP Header

General Description. To prevent exploitation of missed XSS vulnerabilities at the web
application, browser vendors implemented XSS �lters. These �lters can be enabled and
con�gured for di�erent modes with speci�c HTTP headers [10].

Recommendation. We recommend adding the X-XSS-Protection HTTP header to all
responses to enable the browsers XSS �lter. We recommend that the HTTP header is
used with the mode=block option if possible [10].

8https://hstspreload.org

30

https://hstspreload.org

8 Recommendations

8.15 R15 Disable Referer HTTP Header

General Description. The Referer HTTP header is attached to almost every HTTP
request by the browser. It is set to the URL of the page which the user's browser is
coming from. This can cause information leaks as parameters contained in the URL can
be leaked to another party [10]. In the case of DENIC ID the Referer which is attached to
the request of a relying party's logo will leak the nonce and state of the authorization �ow.
This could be a potential security issue if the relying party's logo is hosted on a di�erent
website. To prevent information leaks through the Referer header, the Referrer-Policy

header exists. It can be used to disable the Referer header completely.

Recommendation. We recommend adding the HTTP header Referrer-Policy: no-

referrer to every response to disable the usage of the Referer HTTP header [10].

8.16 R16 Disable Content Type Sni�ng

General Description. To provide a better user experience, browsers attempt to deter-
mine the content type of the presented document (in particular Internet Explorer). This
so-called content type sni�ng can result in the actually stated content type (Content-Type
HTTP header) being ignored. Therefore, if a server returns JavaScript Object Nota-
tion (JSON) data and sets the correct content type (Content-Type: application/json), the
browser might still determine that the presented data looks like Hypertext Markup Lan-
guage (HTML) and try to render it. This could result in security vulnerabilities such as
XSS. To prevent content type sni�ng, the HTTP header X-Content-Type-Options can be
used [10].

Recommendation. We recommend adding the HTTP header X-Content-Type-Options:

nosniff to all responses to prevent content type sni�ng.

8.17 R17 Set Cache Control HTTP Headers

Description. On some pages, the application uses the Expires HTTP header with the
value epoch, resulting in those pages being immediately invalidated in the browser cache.
However, the application does not use the HTTP headers Cache-control and Pragma which
can be used to prevent any caching by the browser.

Recommendation. We recommend adding the HTTP headers Cache-control: no-store,
Pragma: no-cache, and Expires: -1 on all pages which should not be cached. This will
prevent the browser from caching any of those pages.

31

8 Recommendations

8.18 R18 Use Discovery Mechanism at Identity Agent

General Description. When the identity agent receives an access token, it needs to
access the JWKS �le of the identity authority which issued the access token in order to
verify the signature. However, the identity agent does not use the discovery mechanism
to determine the URL of the identity authority's JWKS �le. Instead, it tries to access
the JWKS �le at the URL *IdentityAuthority*/jwks.json directly. Depending on the
con�guration of the identity authority, the JWKS �le might be located at a di�erent URL
and this URL might change in the future. Therefore, the identity agent should use the
discovery mechanism to determine the correct location of the JWKS �le and use the URL
provided by the identity authority to access the JWKS �le afterward.

Recommendation. We recommend ensuring that the identity agent always uses the
discovery mechanism to determine the metadata and URLs of the identity authority
instead of trying to access endpoints or �les at the identity authority based on URLs
hardcoded or obtained earlier.

32

Identity Authority/jwks.json

9 Further Evaluations

9 Further Evaluations

In this section, we list further evaluations which we conducted in our penetration test. It
provides useful information for future security evaluations.

9.1 OpenID Connect Parameters

The following tests for common OpenID Connect parameters were conducted:

• It is not possible to change the �ow from authorization code �ow to the implicit
�ow or hybrid �ow using the response_type parameter. The identity authority rejects
requests with values other than �code� for the response_type parameter and responds
with di�erent error messages.

• Di�erent valid values for the display parameter (�page�, �popup�, �touch� or �wap�)
result in the same consent page being delivered by the identity authority. Invalid
values (e.g., �hackmanit�) result in the request being rejected with the error message:
HTTP/1.1 404 Not Found ... {"code":404,"message":"HTTP 404 Not Found"}

• The parameter response_mode seems to be ignored by the identity authority. Dif-
ferent values both valid (�form_post�, �query�, and �fragment�) and invalid (e.g.,
�hackmanit�) all result in the Authorization Code being delivered as a query param-
eter.

• Besides the weakness described in I01 , other valid values for the prompt parameter
are handled correctly:

� If the value is �login�, the identity authority prompts the user to log in even
when the user had a valid session before.

� If the value is �consent�, the identity authority displays a consent page to the
user directly if the user has a valid session.

� If the value is �none�, the identity authority redirects the user back to the
relying party with an error message: error_description=Consent+required&error

=consent_required

9.2 Authorization Code

The following tests for the Authorization Code were conducted:

• The Authorization Code can only be redeemed once. If an already redeemed
Authorization Code is sent to the token endpoint of the identity authority a second
time, it is rejected with the error message: HTTP/1.1 400 Bad Request ... {"error_

description":"Invalid or expired authorization code, redirection URI mismatch, or

PKCE verification failure","error":"invalid_grant"}

33

9 Further Evaluations

• The Authorization Code can only be redeemed using the client credentials of the
relying party it was intended for. If the token request does not contain valid
client credentials, or the client credentials do not match the relying party the
Authorization Code was intended for, the identity authority rejects the request with
the error message: HTTP/1.1 400 Bad Request ... {"error_description":"Invalid

or expired authorization code, redirection URI mismatch, or PKCE verification

failure","error":"invalid_grant"}

9.3 Access Token

The following tests for the access token were conducted:

• The access token is supposed to be valid for 600 seconds. Sending a request to the
userinfo endpoint of the identity authority or identity agent shows that the access
token is not accepted after it has expired.

• The identity authority allows storing the selection of claims a user wants to grant
to a speci�c relying party permanently by checking the �Remember for future logins
with this client?� box on the consent page. These granted claims can be changed
or revoked in the dashboard of the identity authority. This results in the access
token no longer being valid at the userinfo endpoint of the identity authority. As
the scenario does not make use of token introspection, the identity agent can only
determine whether an access token is valid or not based on the contained times-
tamps. Therefore, the access token is still considered to be valid at the userinfo
endpoint of the identity agent and can still be used to access user information after
the granted claims have been changed in the dashboard of the identity authority. If
recommendations R01 and R02 will be implemented, the identity agent will not
be accessible with revoked access tokens anymore.

• The claims parameter in the authorization request contains a JSON document. This
document speci�es which claims the relying party would like to access using the
access token. It is possible to specify that the claims should be contained directly in
the ID token instead of being accessed at the userinfo endpoint later. However, when
the authorization request contains a JSON document requesting this behavior, the
ID token issued by the identity authority later does not contain the requested claims
and the access token does not contain any claims either. The userinfo endpoints
of both the identity authority and identity agent do not deliver any claims when
invoked with the obtained access token.

• Adding unknown claims (e.g., �hackmanit�) to the JSON document in the claims

parameter in the authorization request does not result in an error. However, un-
known claims are not contained in the access token issued by the identity authority
and, therefore, not provided by the userinfo endpoint of the identity agent.

34

9 Further Evaluations

9.4 Refresh Token

The identity authority issues a refresh token in addition to the access token and ID token
if the authorization request does not contain the claims parameter. To be able to use
refresh tokens later, the relying party needs to register the �refresh_token� grant type
during its client registration by adding it to the grant_types �eld in the client registration
request. The following tests for the refresh token were conducted:

• A refresh token can only be redeemed at the token endpoint of the identity
authority using the correct client credentials. If the request does not contain
client credentials, invalid client credentials, or valid client credentials which do not
belong to the relying party the refresh token was issued for, the identity authority
rejects the request with the error message: HTTP/1.1 401 Unauthorized ... {"error

description":"Invalid client: Possible causes may be missing \/ invalid client

id, missing client authentication, invalid or expired client secret, invalid or

expired JWT authentication, or a mismatch between registered and submitted client

authentication method","error":"invalid_client"}

9.5 Client Registration Endpoint

The following tests for the client registration endpoint were conducted:

• When registering a new client the parameters preferred_client_id and preferred_

client_secret are ignored and cannot be used to decide which client id and client
secret the identity authority assigns to the client.

• When the parameter application_type is set to �native�, the redirect_uri must use
the HTTP scheme and the hostname localhost. Registering a �native� client us-
ing the HTTPS scheme, other hostnames (including localhost.com), or malicious
redirect URIs (e.g., http://localhost.attacker.com or http://localhost:x@a
ttacker.com), is not possible.

• When the parameter application_type is set to �web�, the redirect_uri must not use
the hostname localhost. Registering a �web� client using the hostname localhost
is not possible. However, the identity authority does not enforce the use of the
HTTPS scheme for the redirect_uri of �web� clients (see M06)

• It is not possible to register a client using the javascript: scheme in the redirect_uri

parameter.

• When registering a new client, it is possible to de�ne which grant types
the client should be authorized to use. However, the identity authority
does not assign the grant types �implicit�, �client_credentials�, �password�,
�urn:ietf:params:oauth:grant-type:jwt-bearer�, or �urn:ietf:params:oauth:grant-
type:saml2-bearer� to the client even when they are present in the �eld grant_types

35

localhost
localhost.com
http://localhost.attacker.com
http://localhost:x@attacker.com
http://localhost:x@attacker.com
localhost
localhost

9 Further Evaluations

in the client registration request. The only grant types the identity author-
ity allows clients to specify are �authorization_code�, and the combination of
�authorization_code� and �refresh_token�.

• The client registration endpoint can additionally be used to view the information
stored for a registered client. In order to access this information, a GET request
containing the registration access token for the speci�c client needs to be sent to
IdentityAuthority/clients/*clientid*. Requests without a registration ac-
cess token, or with the registration access token of a di�erent client, are rejected
with an HTTP/1.1 401 Unauthorized error message.

• The client registration endpoint can additionally be used to update certain infor-
mation about registered clients. In order to update the information, a PUT request
containing the registration access token for the speci�c client, and a JSON docu-
ment containing the new information, needs to be sent to *IdentityAuthority*/

clients/*clientid*. Using such requests, it is possible to update information like
the redirect URI or logo URL, but not the client id. Requests without a registration
access token, or with the registration access token of a di�erent client, are rejected
with an HTTP/1.1 401 Unauthorized error message.

• The client registration endpoint can additionally be used to delete registered clients.
In order to delete a client, a DELETE request containing the registration access
token for the speci�c client needs to be sent to *IdentityAuthority*/clients/

clientid. Requests without a registration access token, or with the registration
access token of a di�erent client, are rejected with an HTTP/1.1 401 Unauthorized error
message. After deleting the client, it is no longer possible to access the consent page,
token endpoint, or userinfo endpoint using the client's client id.

9.6 End Session Endpoint

We were not able to successfully invoke the end session endpoint. If it is used with a valid
sessionID, it responds with the error Access denied by resource owner or authorization

server. If it is used with an invalid sessionID, the endpoint responds with Log-out fails

cause required backend resource not available any more.

9.7 Introspection Endpoint

We were not able to successfully invoke the introspection endpoint. It always denied the
access. While accessing it with valid client credentials resulted in the error message Client
not registered for https://id.test.denic.de/token/introspect scope, accessing it with an
access token resulted in the error Insufficient scope.

36

IdentityAuthority/clients/*client id*
IdentityAuthority/clients/*client id*
IdentityAuthority/clients/*client id*
IdentityAuthority/clients/*client id*
IdentityAuthority/clients/*client id*

9 Further Evaluations

9.8 Revocation Endpoint

The following tests for the revocation endpoint were conducted:

• To revoke an access token, the request needs to contain the client credentials of the
client which the access token was issued to. It is not possible to revoke access tokens
issued to other clients.

• After an access token was revoked, it could not be used to access the userinfo end-
point of the identity authority. Due to design issues, the access token can still be
used to access the identity agent since the access token is a self-containing JWT,
and the identity agent is not supposed to perform token introspection. If recom-
mendations R01 and R02 will be implemented, the identity agent will not be
accessible with revoked access token anymore.

9.9 Token Endpoint

The following tests for the token endpoint were conducted:

• The identity authority enforces that registered clients can only use the
grant types they were authorized to during client registration. Request
with values di�erent from these grant types are rejected with the er-
ror message: HTTP/1.1 400 Bad Request ... {"error_description":"The client is not

authorized to use this grant type","error":"unauthorized_client"}

• The identity authority enforces that the parameter redirect_uri is present and not
empty. Additionally, a strict match between the value of the parameter and the
redirect URI registered during client registration (e.g., https%3A%2F%2F4bgm4tygv3
t0vz6h7oof555x2o8ew3.burpcollaborator.net) is applied. Requests containing
the redirect URI of a di�erent client, as well as the following manipulated redirect
URIs, were sent to the token endpoint:

� https%3A%2F%2Fattacker.com#https%3A%2F%2F4bgm4tygv3t0vz6h7oof555

x2o8ew3.burpcollaborator.net

� https%3A%2F%2Fattacker.com#https%3A%2F%2F4bgm4tygv3t0vz6h7oof555

x2o8ew3.burpcollaborator.net

� https%3A%2F%2Fattacker.com%23https%3A%2F%2F4bgm4tygv3t0vz6h7oof5

55x2o8ew3.burpcollaborator.net

� https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.ne

t:x@attacker.com

� https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.ne

t%3Ax%40attacker.com

� http%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net

37

https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net
https%3A%2F%2Fattacker.com#https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net
https%3A%2F%2Fattacker.com#https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net
https%3A%2F%2Fattacker.com#https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net
https%3A%2F%2Fattacker.com#https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net
https%3A%2F%2Fattacker.com%23https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net
https%3A%2F%2Fattacker.com%23https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net:x@attacker.com
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net:x@attacker.com
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net%3Ax%40attacker.com
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net%3Ax%40attacker.com
http%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net

9 Further Evaluations

� https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.ne

t.attacker.de

� https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.ne

t/hackmanit

� https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.ne

t%2Fhackmanit

� https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.ne

t/../

� https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.ne

t%2F..%2F

� https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.ne

t:8443

� https%3A%2F%2lF4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.n

et%3A8443

All requests containing a redirect URI di�erent from the registered one were
rejected with the error message: HTTP/1.1 400 Bad Request ... {"error_description

":"Invalid or expired authorization code, redirection URI mismatch, or PKCE

verification failure","error":"invalid_grant"}

9.10 Userinfo Endpoints

In addition to the vulnerabilities discovered, the following tests for the userinfo endpoints
were conducted:

• Both userinfo endpoints do not allow any HTTP method except GET to retrieve
user information. The methods POST, PUT, PATCH, and DELETE are not allowed
at all, while HEAD and OPTIONS do not return any user information.

• The userinfo endpoint of the identity authority can only be accessed using a valid
access token. Both the timestamps and the signature of the JWT are validated. Ma-
nipulating the body of the access token (e.g., by changing the subject sub, adding or
removing claims) invalidates the signature and results in the request being rejected.
The identity authority is not vulnerable to signature exclusion attacks by removing
the signature or specifying the none algorithm in the header of the access token.

• As described in weakness H01 the identity agent does not enforce that the access
token contains a signature. However, if it contains a signature, it has to be a valid
one. Requests containing an access token with an invalid signature are rejected by
the identity agent.

38

https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net.attacker.de
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net.attacker.de
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net/hackmanit
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net/hackmanit
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net%2Fhackmanit
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net%2Fhackmanit
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net/../
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net/../
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net%2F..%2F
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net%2F..%2F
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net:8443
https%3A%2F%2F4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net:8443
https%3A%2F%2lF4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net%3A8443
https%3A%2F%2lF4bgm4tygv3t0vz6h7oof555x2o8ew3.burpcollaborator.net%3A8443

9 Further Evaluations

• When a request containing two Authorization HTTP headers, which both contain an
access token, is sent to the userinfo endpoint of the identity authority, the second
header is ignored and the access token from the �rst header is used for further
processing.

• Sending a request to the userinfo endpoint of the identity agent containing two
Authorization HTTP headers which both contain a access token results in an error
message independently of the validity of, or user related to, the two access tokens.

• From our observations, we assume that the identity agent uses the identifier param-
eter of the access token and queries the DNS to determine which identity authority
is responsible for the identi�er. Afterwards, it compares the iss �eld of the DNS
response with the iss �eld in the access token. If they match, the JWKS �le of the
identity authority is accessed and used to verify the signature of the access token.
This allowed us to operate our own identity authority, and craft and self-sign our
own access tokens. We conducted the following tests with self-signed access tokens:

� The identity agent seems to make use of the combination of the iss and sub

�elds to identify a user account. Therefore, it is not possible to access the
information of arbitrary users by self-signing an access token which uses the
victim user's sub value. The identity agent will combine the sub value with the
iss value of our own identity authority. This combination represents a di�erent
user account than the one of the victim.

� If the access token contains two iss �elds, the identity agent does not reject
the request, but uses the value of the second �eld for all further processing of
the access token. Therefore, it is not possible to trick the identity agent into
using our JWKS �le to verify the signature and another iss value to identify
the user account.

� If the access token contains an empty iss �eld or no iss �eld at all, the identity
agent rejects the request and does not provide any user information.

� The identity agent always tries to access the JWKS �le and use the key with
the matching key id (if present in the document) to verify the signature of the
access token. Keys or di�erent URLs to specify the key location present in the
header of the access token itself are ignored.

9.11 Updating Stored Claims

The identity agent allows updating the claims stored for a user account using the https:
//mw-beta.id4me.ionos.com/claims endpoint. To access this endpoint, a valid access
token is required. The following tests for the https://mw-beta.id4me.ionos.com/clai
ms endpoint were conducted:

39

https://mw-beta.id4me.ionos.com/claims
https://mw-beta.id4me.ionos.com/claims
https://mw-beta.id4me.ionos.com/claims
https://mw-beta.id4me.ionos.com/claims

9 Further Evaluations

• The endpoint cannot be accessed with a request containing an empty Authorization

HTTP header or a request without any Authorization HTTP header. The
identity agent rejects these requests with an error message: HTTP/1.1 500 ... {"

status":500,"error":"Internal Server Error","message":"org.springframework.http.

ResponseEntity cannot be cast to java.util.Map","timeStamp":"Thu Mar 14 13:12:42

CET 2019","trace":null}

• In contrast to the attack described in weakness H01 , this endpoint is not vul-
nerable to signature exclusion attacks. If the access token contains no sig-
nature or the contained signature is invalid, the identity agent responds with
an error: HTTP/1.1 403 ... {"general":{},"fields":[{"name":"error","description":"

Forbidden.","msgId":"Forbidden."}]}. Specifying the none algorithm in the header of
the access token results in the same error message.

• The endpoint was accessed using di�erent HTTP methods:

� PATCH: The PATCH method is regularly used when the endpoint is accessed
using the update function of the web interface of the identity agent.

� PUT: The PUT method is working with the same parameters as a PATCH
request and results in the same response as the PATCH request.

� DELETE: The DELETE method can be used to delete the claims stored for
the user account. All claims are deleted and an overview of the deleted claims
is contained in the response of the endpoint.

� GET: The GET method deletes all claims and responds with an updated
updated_at value independently of the GET parameters contained in the re-
quest.

9.12 Open Redirects

We evaluated all URLs in the scope of this penetration test and their corresponding
parameters for open redirects. This includes the redirect_uri parameter which is strictly
validated against the registered redirect URIs of the speci�c client using simple string
comparison. We were not able to identify any open redirect.

9.13 Cross-site Scripting

We evaluated all parameters re�ected to the end-user for XSS vulnerabilities. All pa-
rameters that were re�ected at some point were placed either into the HTML context or
into the attribute context. Therefore, all payloads aimed either to directly inject HTML
elements, or to escape from attribute values and inject additional attributes. The default
payload for manually evaluating was "'<> to simply check if any of the characters were
injected into the website unencoded. We discovered that the application uses either URL

40

9 Further Evaluations

encoding or HTML entity encoding for all re�ected values. As this prevents us from in-
jecting arbitrary HTML code or new attributes and event handlers; we were not able to
execute arbitrary JavaScript code.

9.14 XML-based Attacks

We evaluated if any endpoint in the scope of the penetration test processes eXtended
Markup Language (XML) data contained in the request. We used di�erent test payloads
for XML DoS and XML External Entity (XXE) attacks. However, no endpoint processed
the XML data and no vulnerability based on XML could be identi�ed.

9.15 TLS Con�guration

We tested the TLS con�guration of both the identity agent and the identity authority
with testssl.sh and TLS-Scanner. While the servers use di�erent TLS con�gurations, their
con�gurations are both secure and they are not vulnerable to any relevant attack. Both
servers support TLS 1.0 or higher and secure cryptographic algorithms.

The results of testssl.sh are provided in Listing 5 and Listing 6.

1 Testing protocols via sockets except NPN+ALPN
2

3 SSLv2 not o�ered (OK)
4 SSLv3 not o�ered (OK)
5 TLS 1 o�ered
6 TLS 1.1 o�ered
7 TLS 1.2 o�ered (OK)
8 TLS 1.3 not o�ered
9 NPN/SPDY h2, http/1.1, acme−tls/1 (advertised)

10 ALPN/HTTP2 h2, http/1.1 (o�ered)
11

12 Testing cipher categories
13

14 NULL ciphers (no encryption) not o�ered (OK)
15 Anonymous NULL Ciphers (no authentication) not o�ered (OK)
16 Export ciphers (w/o ADH+NULL) not o�ered (OK)
17 LOW: 64 Bit + DES, RC[2,4] (w/o export) not o�ered (OK)
18 Triple DES Ciphers / IDEA o�ered (NOT ok)
19 Average: SEED + 128+256 Bit CBC ciphers o�ered
20 Strong encryption (AEAD ciphers) o�ered (OK)
21

22

23 Testing robust (perfect) forward secrecy, (P)FS −− omitting Null Authentication/Encryption, 3DES, RC4
24

25 PFS is o�ered (OK) ECDHE−RSA−AES256−GCM−SHA384 ECDHE−RSA−AES256−SHA
26 ECDHE−RSA−CHACHA20−POLY1305
27 ECDHE−RSA−AES128−GCM−SHA256 ECDHE−RSA−AES128−SHA
28 Elliptic curves o�ered: prime256v1 secp384r1 secp521r1 X25519
29

30

31 Testing server preferences
32

33 Has server cipher order? yes (OK)
34 Negotiated protocol TLSv1.2
35 Negotiated cipher ECDHE−RSA−AES128−GCM−SHA256, 256 bit ECDH (P−256)
36 Cipher order

41

9 Further Evaluations

37 TLSv1: ECDHE−RSA−AES128−SHA ECDHE−RSA−AES256−SHA AES128−SHA AES256−SHA
38 ECDHE−RSA−DES−CBC3−SHA DES−CBC3−SHA
39 TLSv1.1: ECDHE−RSA−AES128−SHA ECDHE−RSA−AES256−SHA AES128−SHA AES256−SHA
40 ECDHE−RSA−DES−CBC3−SHA DES−CBC3−SHA
41 TLSv1.2: ECDHE−RSA−AES128−GCM−SHA256 ECDHE−RSA−AES256−GCM−SHA384
42 ECDHE−RSA−CHACHA20−POLY1305 ECDHE−RSA−AES128−SHA
43 ECDHE−RSA−AES256−SHA AES128−GCM−SHA256 AES256−GCM−SHA384
44 AES128−SHA AES256−SHA ECDHE−RSA−DES−CBC3−SHA DES−CBC3−SHA
45

46

47 Testing server defaults (Server Hello)
48

49 TLS extensions (standard) "next protocol/#13172" "session ticket/#35"
50 "renegotiation info/#65281"
51 "application layer protocol negotiation/#16"
52 Session Ticket RFC 5077 hint (no lifetime advertised)
53 SSL Session ID support yes
54 Session Resumption Tickets: yes, ID: no
55 TLS clock skew Random values, no �ngerprinting possible
56 Signature Algorithm SHA256 with RSA
57 Server key size RSA 2048 bits
58 Server key usage Digital Signature, Key Encipherment
59 Server extended key usage TLS Web Server Authentication, TLS Web Client Authentication
60 Serial / Fingerprints 03CC50B3831362F7ABED840DB869BAEAC811 / SHA1 7C3467E08EE097DB532E50EB0A4EC4D

28457F35B
61 SHA256 4D4A06CED3FEF289D47FEDA4E22910CF9B2B63EE8914938B8BB0025FA5818A81
62 Common Name (CN) id.test.denic.de (CN in response to request w/o SNI: mTRAEFIK DEFAULT CERT)
63 subjectAltName (SAN) id.test.denic.de
64 Issuer Let's Encrypt Authority X3 (mLet's Encrypt from mUS)
65 Trust (hostname) Ok via SAN and CN (SNI mandatory)
66 Chain of trust Ok
67 EV cert (experimental) no
68 "eTLS" (visibility info) not present
69 Certi�cate Validity (UTC) 82 >= 30 days (2019−03−06 15:50 −−> 2019−06−04 15:50)
70 # of certi�cates provided 2
71 Certi�cate Revocation List −−
72 OCSP URI http://ocsp.int−x3.letsencrypt.org
73 OCSP stapling not o�ered
74 OCSP must staple extension −−
75 DNS CAA RR (experimental) not o�ered
76 Certi�cate Transparency yes (certi�cate extension)
77

78 Testing vulnerabilities
79

80 Heartbleed (CVE−2014−0160) not vulnerable (OK), no heartbeat extension
81 CCS (CVE−2014−0224) not vulnerable (OK)
82 Ticketbleed (CVE−2016−9244), experiment. not vulnerable (OK), reply empty
83 ROBOT not vulnerable (OK)
84 Secure Renegotiation (CVE−2009−3555) not vulnerable (OK)
85 Secure Client−Initiated Renegotiation not vulnerable (OK)
86 CRIME, TLS (CVE−2012−4929) not vulnerable (OK)
87 BREACH (CVE−2013−3587) no HTTP compression (OK) − only supplied "/" tested
88 POODLE, SSL (CVE−2014−3566) not vulnerable (OK)
89 TLS_FALLBACK_SCSV (RFC 7507) Downgrade attack prevention supported (OK)
90 SWEET32 (CVE−2016−2183, CVE−2016−6329) VULNERABLE, uses 64 bit block ciphers
91 FREAK (CVE−2015−0204) not vulnerable (OK)
92 DROWN (CVE−2016−0800, CVE−2016−0703) not vulnerable on this host and port (OK)
93 make sure you don't use this certi�cate elsewhere with SSLv2 enabled services
94 https://censys.io/ipv4?q=4D4A06CED3FEF289D47FEDA4E22910CF9B2B63EE8914938B8BB0025FA5818A81 could help

you to �nd out
95 LOGJAM (CVE−2015−4000), experimental not vulnerable (OK): no DH EXPORT ciphers, no DH key detected with

<= TLS 1.2
96 BEAST (CVE−2011−3389) TLS1: ECDHE−RSA−AES128−SHA
97 ECDHE−RSA−AES256−SHA
98 AES128−SHA AES256−SHA
99 ECDHE−RSA−DES−CBC3−SHA

100 DES−CBC3−SHA

42

9 Further Evaluations

101 VULNERABLE −− but also supports higher protocols TLSv1.1 TLSv1.2 (likely mitigated)
102 LUCKY13 (CVE−2013−0169), experimental potentially VULNERABLE, uses cipher block chaining (CBC) ciphers with

TLS. Check patches
103 RC4 (CVE−2013−2566, CVE−2015−2808) no RC4 ciphers detected (OK)

Listing 5: testssl.sh scan of id.test.denic.de

1 Testing protocols via sockets except NPN+ALPN
2

3 SSLv2 mnot o�ered (OK)
4 SSLv3 mnot o�ered (OK)
5 TLS 1 not o�ered
6 TLS 1.1 not o�ered
7 TLS 1.2 mo�ered (OK)
8 TLS 1.3 not o�ered
9 NPN/SPDY http/1.1 (advertised)

10 ALPN/HTTP2 http/1.1 (o�ered)
11

12 Testing cipher categories
13

14 NULL ciphers (no encryption) not o�ered (OK)
15 Anonymous NULL Ciphers (no authentication) not o�ered (OK)
16 Export ciphers (w/o ADH+NULL) not o�ered (OK)
17 LOW: 64 Bit + DES, RC[2,4] (w/o export) not o�ered (OK)
18 Triple DES Ciphers / IDEA not o�ered (OK)
19 Average: SEED + 128+256 Bit CBC ciphers o�ered
20 Strong encryption (AEAD ciphers) o�ered (OK)
21

22

23 Testing robust (perfect) forward secrecy, (P)FS −− omitting Null Authentication/Encryption, 3DES, RC4
24

25 PFS is o�ered (OK) ECDHE−RSA−AES256−GCM−SHA384
26 ECDHE−RSA−AES256−SHA384 ECDHE−RSA−AES256−SHA
27 ECDHE−RSA−AES128−GCM−SHA256
28 ECDHE−RSA−AES128−SHA256 ECDHE−RSA−AES128−SHA
29 DHE−RSA−AES128−GCM−SHA256 DHE−RSA−AES128−CCM8
30 DHE−RSA−AES128−CCM DHE−RSA−AES128−SHA256
31 DHE−RSA−AES128−SHA
32 Elliptic curves o�ered: prime256v1 secp384r1 secp521r1 X25519 X448
33 DH group o�ered: Unknown DH group (2048 bits)
34

35 Testing server preferences
36

37 Has server cipher order? yes (OK)
38 Negotiated protocol TLSv1.2
39 Negotiated cipher ECDHE−RSA−AES256−GCM−SHA384, 256 bit ECDH (P−256)
40 Cipher order
41 TLSv1.2: ECDHE−RSA−AES256−GCM−SHA384 ECDHE−RSA−AES128−GCM−SHA256
42 ECDHE−RSA−AES256−SHA384 ECDHE−RSA−AES256−SHA
43 ECDHE−RSA−AES128−SHA256 ECDHE−RSA−AES128−SHA
44 DHE−RSA−AES128−GCM−SHA256 DHE−RSA−AES128−CCM8 DHE−RSA−AES128−CCM
45 DHE−RSA−AES128−SHA256 DHE−RSA−AES128−SHA
46

47

48 Testing server defaults (Server Hello)
49

50 TLS extensions (standard) "renegotiation info/#65281" "server name/#0"
51 "EC point formats/#11" "session ticket/#35"
52 "next protocol/#13172" "max fragment length/#1"
53 "application layer protocol negotiation/#16"
54 "encrypt−then−mac/#22"
55 "extended master secret/#23"
56 Session Ticket RFC 5077 hint 10800 seconds, session tickets keys seems to be rotated < daily
57 SSL Session ID support yes
58 Session Resumption Tickets: yes, ID: yes
59 TLS clock skew Random values, no �ngerprinting possible
60 Signature Algorithm SHA256 with RSA

43

9 Further Evaluations

61 Server key size RSA 2048 bits
62 Server key usage Digital Signature, Key Encipherment
63 Server extended key usage TLS Web Server Authentication, TLS Web Client Authentication
64 Serial / Fingerprints 04C4BAD16928B01B55A137CC4EF0EA4E / SHA1 62C19E9B102D1C8929CDFA1856F59E299272

DA39
65 SHA256 89237DA7647C13157728CCD3E627C4B9F620D76C0AA1869F3C76A83FF63E50BD
66 Common Name (CN) ∗.id4me.ionos.com (CN in response to request w/o SNI: ∗)
67 subjectAltName (SAN) ∗.id4me.ionos.com
68 Issuer GeoTrust RSA CA 2018 (DigiCert Inc from US)
69 Trust (hostname) Ok via SAN wildcard and CN wildcard (SNI mandatory)
70 Chain of trust Ok
71 EV cert (experimental) no
72 "eTLS" (visibility info) not present
73 Certi�cate Validity (UTC) 643 >= 60 days (2018−12−17 00:00 −−> 2020−12−16 12:00)
74 # of certi�cates provided 2
75 Certi�cate Revocation List http://cdp.geotrust.com/GeoTrustRSACA2018.crl
76 OCSP URI http://status.geotrust.com
77 OCSP stapling not o�ered
78 OCSP must staple extension −−
79 DNS CAA RR (experimental) not o�ered
80 Certi�cate Transparency yes (certi�cate extension)
81

82

83 Testing vulnerabilities
84

85 Heartbleed (CVE−2014−0160) not vulnerable (OK), no heartbeat extension
86 CCS (CVE−2014−0224) not vulnerable (OK)
87 Ticketbleed (CVE−2016−9244), experiment. not vulnerable (OK)
88 ROBOT Server does not support any cipher suites that use RSA key transport
89 Secure Renegotiation (CVE−2009−3555) not vulnerable (OK)
90 Secure Client−Initiated Renegotiation not vulnerable (OK)
91 CRIME, TLS (CVE−2012−4929) not vulnerable (OK)
92 BREACH (CVE−2013−3587) no HTTP compression (OK) − only supplied "/" tested
93 POODLE, SSL (CVE−2014−3566) not vulnerable (OK)
94 TLS_FALLBACK_SCSV (RFC 7507) No fallback possible, no protocol below TLS 1.2 o�ered (OK)
95 SWEET32 (CVE−2016−2183, CVE−2016−6329) not vulnerable (OK)
96 FREAK (CVE−2015−0204) not vulnerable (OK)
97 DROWN (CVE−2016−0800, CVE−2016−0703) not vulnerable on this host and port (OK)
98 make sure you don't use this certi�cate elsewhere with SSLv2 enabled services
99 https://censys.io/ipv4?q=89237DA7647C13157728CCD3E627C4B9F620D76C0AA1869F3C76A83FF63E50BD could help

you to �nd out
100 LOGJAM (CVE−2015−4000), experimental not vulnerable (OK): no DH EXPORT ciphers, no common prime detected
101 BEAST (CVE−2011−3389) no SSL3 or TLS1 (OK)
102 LUCKY13 (CVE−2013−0169), experimental potentially VULNERABLE, uses cipher block chaining (CBC) ciphers with

TLS. Check patches
103 RC4 (CVE−2013−2566, CVE−2015−2808) no RC4 ciphers detected (OK)

Listing 6: testssl.sh scan of api-beta.id4me.ionos.com

44

References

References

[1] Vittorio Bertola. ID4me Technical Overview. https://id4me.org/documents/,
June 2018.

[2] M. Jones. JSON Web Algorithms (JWA). RFC 7518 (Proposed Standard), May
2015.

[3] T. Lodderstedt, J. Bradley, A. Labunets, and D. Fett. OAuth 2.0 Security Best
Current Practice. Draft-ietf-oauth-security-topics-12, 2019. https://tools.ietf.o
rg/html/draft-ietf-oauth-security-topics-12.

[4] P.V. Mockapetris. Domain names - concepts and facilities. RFC 1034 (INTERNET
STANDARD), November 1987.

[5] OWASP. Session management cheat sheet. https://github.com/OWASP/CheatSh

eetSeries/blob/master/cheatsheets/Session_Management_Cheat_Sheet.md.

[6] OWASP. Cross-site request forgery (csrf), 2016. https://www.owasp.org/index.

php/Cross-Site_Request_Forgery_(CSRF).

[7] OWASP. Clickjacking, 2018. https://www.owasp.org/index.php/Clickjacking.

[8] OWASP. Clickjacking Defense Cheat Sheet, 2019. https://github.com/OWASP/C

heatSheetSeries/blob/master/cheatsheets/Clickjacking_Defense_Cheat_S

heet.md.

[9] OWASP. HTTP Strict Transport Security Cheat Sheet, 2019. https:

//github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/HTTP_S

trict_Transport_Security_Cheat_Sheet.md.

[10] OWASP. OWASP Secure Headers Project, 2019. https://www.owasp.org/index.
php/OWASP_Secure_Headers_Project#xxxsp.

[11] N Sakimura, J Bradley, and M Jones. Openid connect dynamic client registration
1.0, 2013.

[12] Natsuhiko Sakimura, J Bradley, M Jones, B de Medeiros, and C Mortimore. Openid
connect core 1.0, 2014.

45

https://id4me.org/documents/
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-12
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-12
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Session_Management_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Session_Management_Cheat_Sheet.md
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Clickjacking
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Clickjacking_Defense_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Clickjacking_Defense_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Clickjacking_Defense_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.md
https://www.owasp.org/index.php/OWASP_Secure_Headers_Project#xxxsp
https://www.owasp.org/index.php/OWASP_Secure_Headers_Project#xxxsp

	Summary
	Project Timeline
	Methodology
	General Conditions and Scope
	Scenario Description
	Overview of Weaknesses and Recommendations
	Weaknesses
	H01 Signature Exclusion at the Identity Agent
	M01 Insufficient Clickjacking Protections
	M02 User Enumeration
	M03 Missing Binding Between HTTP Parameter sessionID and Session Cookies
	M04 Insufficient Cross-site Request Forgery Protection
	M05 Faulty Session Management
	M06 Identity Authority Allows HTTP Redirect URIs
	L01 Missing Brute Force Protections
	L02 Denial-of-Service Attack at the Identity Agent
	I01 Information Disclosure on the Consent Page

	Recommendations
	R01 Issue a New Access Token to Access the Identity Agent at Userinfo Endpoint
	R02 Implement Access Tokens as One-Time-Use Tokens at Identity Agent
	R03 Revoke Authorization Code When It Is Redeemed Using False Client Credentials
	R04 Revoke Tokens If the Related Authorization Code Is Redeemed a Second Time
	R05 Revoke Tokens When the User Changes his Password
	R06 Implement Refresh Tokens as One-Time-Use Tokens
	R07 Revoke Tokens When a Refresh Token Is Redeemed a Second Time
	R08 Prevent Concurrent Logins
	R09 Secure Cookies with HttpOnly Flag
	R10 Secure Cookies with Secure Flag
	R11 Enforce HTTP Stricts Transport Security
	R12 Restrict Cross-Origin Resource Sharing to Whitelist
	R13 Enable Content Security Policy
	R14 Set XSS Protection HTTP Header
	R15 Disable Referer HTTP Header
	R16 Disable Content Type Sniffing
	R17 Set Cache Control HTTP Headers
	R18 Use Discovery Mechanism at Identity Agent

	Further Evaluations
	OpenID Connect Parameters
	Authorization Code
	Access Token
	Refresh Token
	Client Registration Endpoint
	End Session Endpoint
	Introspection Endpoint
	Revocation Endpoint
	Token Endpoint
	Userinfo Endpoints
	Updating Stored Claims
	Open Redirects
	Cross-site Scripting
	XML-based Attacks
	TLS Configuration

